Complications of Miniscrew Anchorage in Orthodontics- A Literature Review

Sharath Kumar Shetty¹, Vijayananda K. Madhur², Mohammed Mazvin Nihal¹', Mahesh Kumar Y³

¹Professor & HOD, Department of Orthodontics and Dentofacial Orthopaedics, K. V. G. Dental College and Hospital, Sullia, Karnataka, India
²Reader, Department of Orthodontics and Dentofacial Orthopaedics, K. V. G. Dental College and Hospital, Sullia, Karnataka, India
³Post Graduate Student, Department of Orthodontics and Dentofacial Orthopaedics, K. V. G. Dental College and Hospital, Sullia, Karnataka, India

*Corresponding author: Mohammed Mazvin Nihal
DOI: 10.21276/sjds.2019.6.3.17

Miniscrew anchorage has greatly expanded the limit of clinical orthodontics. Even without patient compliance, miniscrews can provide stationary anchorages for various tooth movements and even make it possible to move the tooth in directions which have been impossible with traditional orthodontic mechanics. On the other hand, the clinical use of miniscrew anchorage may include some complication. We have to understand these risks and complications of miniscrew anchorage which will lead to their failure and pay attention for their safety-conscious use.

Keywords: Miniscrew, orthodontics, compliance.

INTRODUCTION

Anchorage control is one of the key issues to be taken into account when planning orthodontic treatment [1]. To get the appropriate anchorage, numerous anchorage devices are proposed and used for more than a century. Extraoral anchorages such as headgears or facemasks are the most powerful tools but they have a weak point that their effectiveness depends on the patient compliance. Intermaxillary elastics also have the same disadvantage. Intraoral anchorages, i.e. transpalatal arch, lingual arch, holding arch and so on, do not require patient compliance but it is impossible to provide absolute anchorage.

For clinicians, common concerns about skeletal anchorage are success rates and risk factors for failure. However, few human studies examined factors associated with the stability of skeletal anchorage. Chung et al [2,4] reported that failure was more likely when screws were placed in nonkeratinized mucosa. In human and animal studies, it was reported that the success rates of miniscrews in the mandible were significantly lower than in the maxilla, even though mandibular dental implants have a higher success rate [2,4-6].

Shapiro and Kokich[7] proposed that endosseous implants can be used to provide anchors for tooth and bone movement. Compared with traditional anchorage reinforcements such as transpalatal arches and extraoral appliances, mini-implants are advantageous because of their smaller size, convenient insertion and removal procedures, relatively low cost, and the fact that immediate orthodontic loading is possible after surgery [8,9]. However, a practical issue is mini-implant loosening, which can compromise the success rate of the procedure.

The clinical use of miniscrew anchorage accompanies some risks and complications, which occur during screw insertion, under orthodontic loading, and during removal [10]. Screw fracture might be one of the most undesirable side effects in clinical use of miniscrew anchorage, which occurs in not only the placement but also the removal [11].

Screw failure

Most of screw failure occurs in a week after the implantation (Fig. 1). A lot of factors are proposed for the relation with screw failure. For the host factors, age [12, 13], smoking[14, oral hygiene control [15, 16], implant site [17, 14, 12, 15, 16]. Keratinized tissue 18, cortical bone thickness [19, 20], bone density [19, 21] are reported.

For the technical factors, screw diameter [15,19,21,22] screw length [15, 23], screw taper [24, 25], shape of screw thread [21], insertion method (selfdrilling vs self-tapping)[26, 27], insertion torque [14,28,25,27], insertion angle [29,30] treatment period [23], amount of loading [31], direction of loading [31], microfracture of alveolar bone [32] are suggested (Table 1).
Papageorgiou et al. [14] recently reported a meta-analysis in 82 scientific papers describing success rates of orthodontic miniscrews or risk factors for screw failure. They analyzed a lot of factors and found the two factors closely related with the success rates, which are the screw contact to the adjacent root and screw placement in the mandible.

Kuroda et al. [33] initially reported that screw root proximity was one of the major risk factors for screw failure. They analyzed dental radiographs taken after the screw insertion and each screw was classified according to its proximity to the adjacent root; category I, the screw was absolutely separate from the root; category II, the apex of the screw appeared to touch the lamina dura; and category III, the body of the screw was overlaid on the lamina dura. Category I and II showed high success rates of 92.9% and 87.2%, respectively, but category III showed 62.5%. This tendency was more obviously demonstrated in the mandible. Several reports recently indicated same conclusion by using a three-dimensional computed tomography [34, 35].

To avoid the screw root proximity, screws can be placed out of dentition, i.e. midpalate or retromolar area. However, the screws require some complicated auxiliaries for loading to teeth, which sometimes make the patients discomfort. Therefore, we strongly recommend an oblique angle insertion of interradicular miniscrews. Roots get thinner when it goes close to the apex, and the interradicular spaces become wider [36]. Hence the position of screw insertion had better be placed high as possible to avoid the root proximity, however; the alveolar bone apart from the clinical crown is normally covered with non-keratinized tissue. Some reports suggested that screw placed through non keratinized mucosa had higher failure rate [18], and it sometimes become cause of pain and discomfort. Then, screw should be placed through keratinized mucosa (attached gingiva) with an oblique angle insertion. The oblique insertion decreases the possibility of screw root contact not only in insertion but also during active tooth movement, which is quite useful in the cases of molar intrusion or group distalization. Moreover, the oblique inserted miniscrews increase the cortical bone—screw contact and must contribute to enhance the initial stability.

Root contact

Root contact during insertion is associated with increased the failure rates of mini implants. The rate and pattern of root contacts have been reported to be associated with the surgery site and the operator’s experience. Root contact produces greater stresses [37]. Which could result in irreversible loss of mini implant stability [38]. Mini implants with root contact were found to be surrounded by increased volumes of soft tissues, with inflammation around the mini implants, but the damaged areas of the roots were finally repaired with a narrow zone of mineralized tissue deposited on the root surface after screw removal [39, 40]. Close proximity of the mini-implant body and adjacent roots should be avoided in order to avoid periodontal and root damage, although histological studies show that cellular cementum repair occurs after root trauma [39, 41, 42-47]. The major problem with close implant–root proximity is that this provides inadequate bone coverage for the threads, destabilizes the mini-implant, and increases failure rates [48-53]. Root proximity appears to be more of a risk factor than variations in cortical thickness.50 Root contact, or proximity, is usually detected during mini-implant insertion by a sharp increase in insertion resistance blunting of the mini-implant tip, patient discomfort [39, 44, 54]. These signs should be taken as indicators of close proximity and the mini-implant withdrawn and re-inserted at a different location or angle.

Pain and discomfort after implantation

When the miniscrew insertion is proposed to patients, most of them are initially afraid and ask “Is it OK to put a screw through the gingiva? Is it painful?” But it is true that placement and removal of miniscrew are not invasive and most patients do not feel pain during and after implantation [55, 56]. We previously evaluated the postoperative pain and discomfort after implantation of miniscrews, screws, and miniplates using a retrospective questionnaire in 75 patients [55]. Most patients receiving screws or mini-plates with
mucoperiosteal flap surgery reported pain 1 day after the implantation, and 35% of them have still felt pain a week after. Moreover, most patients appealed the discomfort and swelling after the surgical procedure. On the other hand, 35% of the patients placed miniscrews without flap surgery reported slight pain immediately after the implantation, and only 8% of them felt pain at 1 day after. None reported pain at one week after the insertion. Conclusively, miniscrews placed without flap surgery have suitable characteristics as orthodontic anchorage because of less pain and discomfort.

Placement in the median plate

Mini implants are placed in maxillary and mandibular buccal alveolar bone and are used to improve anchorage for space closure or molar intrusion in patients with open bite. The screws are used during orthodontic treatment to improve orthodontic anchorage and ensure that teeth move predictably and without reciprocal movement. Those inserted into the median palate can be used to provide anchorage for full-arch distalization. Orthodontic mini-screws placed in the palatal bone at the midpalatal suture have failed because of a lack of ossification [57-60]. Nienkemper et al. [61] found that orthodontic mini-screw stability depended mainly on mechanical maintenance, which should increase with insertion depth, because of the larger bone-to-implant contact area. Clinicians must avoid nearby anatomical structures, such as the nasal cavity, because nasal cavity perforation can cause infection [62, 63]. Therefore, sufficient topographical knowledge of the median palate regions and proper placement technique is desirable. Use of excessively long mini-screws increases the risk of nasal cavity perforation and related complications [64, 65]. Thus, clinicians must have sufficient tomographic knowledge of the midpalatal region before performing this procedure.

Tooth movement to the edentulous area

Tooth movement through bone-deficient areas (e.g., the maxillary sinus, the atrophic alveolar ridge) is a challenging matter for orthodontist. Emergence of implant-anchored orthodontics can clear mechanical considerations, however; environmental factors still remain. Several reports demonstrated that tooth movement to the bone-deficient areas might reduce the alveolar bone height and/or the root length [66, 67]. In contrast, some reports have suggested that a tooth with normal supporting apparatus height can be orthodontically moved through the maxillary sinus while maintaining pulp vitality and bone support and exhibiting normal width of the periodontal ligament on both the compression and tension sides [68]. Recently, we moved the maxillary first molar of 20 mice toward the palatal side for 1—14 days, and evaluated the bone remodeling around the root [69]. When proper mechanical stress was applied to the tooth, the periodontal ligament on the palatal side was immediately compressed to approximately half of its original width. At the same time, osteoblasts deposited new bone on the sinus wall prior to bone resorption by osteoclasts on the periodontal ligament side. As a result of these sequential processes, bone on the sinus wall maintained a consistent thickness during the entire observation period. No root resorption was observed. On the other hand, strong force application stimulated more bone formation on the sinus wall but bone resorption on the periodontal ligament side was delayed because of the hylanization of periodontal ligament. The resulting temporary increase in total thickness of the sinus wall essentially indicates that strong force application will not accelerate tooth movement. Moreover, some root resorption was induced under the excessive force application. Conclusively, mechanotransduction of appropriate mechanical stress can be exploited to induce bone formation in the maxillary sinus so that tooth can be moved into the sinus without abnormal bone and root resorption. However, excessive force decreases efficiency of tooth movement and induces root resorption.

Damage of soft tissues

When a screw is inserted with an oblique angle to the bonesurface, a clinician has to take care not to slip the screw. To prevent the soft tissue damage by the slippage, a self-tapping method, pre-drilling with a round bar on the cortical bone, must be effective. Screws placed through the non-keratinized gingiva or movable gingiva stimulates surrounding soft tissue and sometimes evokes the peri-implantitis. Chang et al.[70], reported that miniscrew placement through non-keratinized tissue sometimes caused screw failure. Moreover, the screws are often covered with surrounding movable mucosa and it will become cause of pain and discomfort (Fig. 2). Therefore, miniscrews had better be implanted in the range of attached/keratinized gingiva.
Fig-2: A screw through non-keratinized oral mucosa. Slight inflammation was shown around the screw head

The screw head placed close to the mucogingival junction irritates the movable mucosa and it becomes cause of ulcer. Auxiliaries attached between the screw head and the archwire, i.e. coil springs, elastomeric chains, hooks, and ligation wires, should be adjusted not to touch the gingiva or oral mucosa to avoid the pain and discomfort a patient. A palatal miniscrew sometimes induces pain and injury on the surface of tongue. Use of miniscrews makes it possible to distalize the whole dentition, which breaks the methodological limitation of tooth movement. However; an excessive distal movement causes impaction of the second molar under the gingiva and evokes peri-coronitis, especially in the mandible. Proper diagnosis based on the clinical examinations is important in the implant-anchored orthodontics.

Surgical complications

Any number of complications can occur during or after the placement of dental implants. Most are immediately apparent; however, some can occur.

Christian and colleagues [1] recommended the use of a safety checklist before the placement of implants; this checklist includes a review of the patient’s medical and dental history, a diagnostic workup, a determination of the periodontal stability of adjacent teeth, and effective communication with restorative partners much later.

Bleeding

Minor bleeding is inherent during the placement of dental implants, as with any surgical procedure. However, major bleeding is uncommon and can be life threatening. The causes of major bleeding may be related to systemic issues or regional anatomy.

Maxilla

Bleeding with the placement of maxillary implants is rare. Moderate or severe maxillary bleeding may result from injury to intraosseous vessels lying within the walls of the maxilla. The vessels can be seen on computed tomography (CT), but not on plain radiographic films (Fig. 3). Anterior or posterior nasal bleeding, which may be profuse, and rapid swelling of the gingiva are common signs associated with an injury to one of these vessels.

Fig-3: Cone beam computerized tomography of a patient who had a large hematoma after a sinus lift. Red circle indicates vessel in the bony of the maxillary sinus
Mandible

Multiple publications have reported bleeding, in some cases life-threatening hemorrhage, after the placement of implants in the anterior mandible. The cause of bleeding during implant placement in the anterior mandible is perforation of the lingual cortex, resulting in injury to the terminal branches of the sublingual or submental artery [71, 72]. The risk of perforation is high when the lingual fossa is very deep and is even higher when no flap is elevated during the procedure.

Infection

Postoperative infections can occur after implant placement with or without grafting of the site. A variety of local and systemic factors may play a role in the development of such infection. Our review of the literature suggests an inconsistency in the definition of postoperative infection. In this section, we define postoperative infection as the presence of purulent drainage (either spontaneously or by incision) or fistula in the operative region, together with pain or tenderness, localized swelling, redness, or fever (>38 °C). Early infection is defined as infection occurring within 1 week postoperatively, and late infection, as infection occurring from 1 week postoperatively to the time of abutment connection (3–8 months postoperatively). It is believed that bacterial contamination during implant insertion can cause early failure of the dental implant. Contamination of the implant surface by bacterial biofilms during operative procedures can lead to an inflammatory process in the hard and soft tissues, thus decreasing the implant success rate. Infections around biomaterials are very difficult to treat and nearly all infected implants may fail at some time after placement.

Nerve injury

Injuries to the inferior alveolar nerve and, less frequently, the lingual nerve have been reported and are of concern when posterior mandibular implants are placed. Management of these injuries is predicated on the degree of nerve injury. Prevention can be simplified to careful preoperative planning. The readers are referred to the article by Drs Al-Sabbagh, Okeson, Khalaf and Bertolli elsewhere in this issue for more details about the management and prevention of these injuries.

Malpositioning of implants

Malpositioning of implants can occur during implant surgery and may be the result of a number of factors, such as the quantity or quality of residual available bone, dental inclinations adjacent to the surgical implant site, and lack of previous prosthetic planning. Managing an implant that is poorly positioned may require a modified prosthetic attachment or surgical removal. The choice of treatment depends on the degree to which the poorly positioned implant will compromise the restorative plan.

Injury to adjacent teeth

When partially edentulous patients are treated, there is a risk of direct or indirect (thermal) injury to the roots of the adjacent teeth (Fig. 4)[74]. Depending on the severity of the injury, the tooth may be sensitive to cold and tender to percussion, and may cause mild discomfort when the patient is eating [75], although the injured tooth may respond normally to vitality tests. Treatment may involve extraction or endodontic treatment [76]. When an implant is in direct contact with an adjacent tooth, immediate removal of the implant may avoid major complications to the tooth. In some instances, implant removal may be accomplished with counter clockwise movement. In other instances, an internal device (Implant Retrieval Tool, Nobel Biocare, Kloten, Switzerland) can be used to unscrew the implant.

Screw fracture

Screw fracture during placement is closely related with insertion torque. Insertion torque of miniscrows generally ranges from 3 to 10 N cm, which is much smaller than the breaking torque disclosed by the manufacture’s instruction [77, 78]. Therefore, majority of miniscrow fracture can be prevented by attending to their insertion torque. Screw fracture frequently occurs in the mandible where cortical bone thickness is significantly thicker than the maxilla [79]. Screw insertion in the mid-palate also has a tendency of high insertion torque; therefore, the place 3 mm apart from the midpalatal suture is suitable for implantation avoiding excessive insertion torque [80]. Moreover, insertion torque might be enlarged when miniscrows are touched to the adjacent root. The miniscrow root proximity should be avoided for preventing screw fracture during screw insertion. Miniscrows are easily

Fig-4: Cone beam images obtained 3 months after placement of an implant in a lower first molar site. The second bicuspid was sensitive to percussion

© 2019 Scholars Journal of Dental Sciences | Published by SAS Publishers, India

188
removed with a screwdriver even though they are retained in the bone for more than a year during the active orthodontic treatment. We measured removal torque of orthodontic miniscrews and looked for the related factors affecting the torque. Sixty-eight screws placed with a self-tapping method and retained for more than 3 months were subjected (Absoanchor, Dentos Inc., Daegu, South Korea; diameter, 1.4 or 1.5 mm; length, 6—8 mm). The average removal torque was 4.56 +/- 1.65 N cm (-1.74 N cm to -8.95 N cm). The removal torque showed no statistical significances between gender, screw length, screw diameter, jaw type, placement sites, and retention period. The breaking points of miniscrews used in the study was at least 20 N cm, therefore, the screws could be basically removed without fracture. However, screw fracture happens when osseointegration is completed (Fig.5).

Fig-5: A screw fractured at the removal. After the fracture, the tip of screw was carefully removed with a flap surgery

Indeed, some screws showed a partial osseointegration after removal. We have removed 191 miniscrews (Absoanchor; Dual-top auto screw, Jeil Co., Seoul, South Korea; Induce MS, Ortholution Co., Ltd., Seongnam, South Korea) in the latest three years and experienced one screw fracture (0.5%). Suzuki and Suzuki [81] removed 280 miniscrews with a diameter of 1.5 mm and reported four fractures (1.4%). Therefore, orthodontists always have to be aware of the possibility of screw fracture in removing procedure. Most fracture is occurred at the neck through cortical bone because mechanical stress in the miniscrew is concentrated at that point. To prevent the fracture, a screwdriver has to be turned slowly without changing the axis. If screw fracture unfortunately happens, the broken screw is tried to remove surgically. However, it is sometimes retained inside of alveolar bone to avoid excessive surgical invasion because of its biocompatibility.

CONCLUSION

This article has highlighted the potential complications for clinical usage of orthodontic anchor screws with the hope of educating clinicians. Clinicians should keep in mind that screw fracture will occur not only at placement but also at removal. All possible efforts need to be made for preventing screw fracture and failure. To reduce patient discomfort during implant-anchored orthodontics, a complicated placement surgery should be avoided and simple treatment mechanics is recommended. Miniscrews will give a better result if it is properly used.

REFERENCES

54. Wilmes B, Su YY, Sadigh L, Drescher D. Predrilling force and insertion torques during orthodontic miniscrew insertion in relation to root


