On Quasi -r-Normal Spaces

Jeyanthi V*, Janaki C

1 Asst. Prof, Depart. Mathematics, Sree Narayana Guru College, Coimbatore -105. Tamilnadu, India
2 Asst. Prof, Depart. Mathematics, L.R.G. Govt. Arts College for Women, Tirupur-4, Tamilnadu, India

*Corresponding Author:
Jeyanthi V
Email: jeyanthi_sgnc@yahoo.com

Abstract: In this paper, we introduce the concept of quasi-r-normal spaces in topological spaces by using regular open sets in topological spaces and obtain some characterizations and preservation theorems for πgr-closed sets.

Mathematics Subject Classification: 54D15, 54C08.

Key Words: Quasi-r-normal space, Quasi normal space, πgr-closed sets.

INTRODUCTION

In 1968, Zaitsev [8] introduced the concept of quasi normal space in topological spaces and obtained several properties of such a space. Sadeq Ali Saad et al.,[7] introduced the concept of quasi p-normal spaces by using p-open sets and obtained its characterization.

In this paper, we use πgr-open sets to obtain the characterization of quasi-r-normal spaces.

PRELIMINARIES

Throughout this paper, spaces (X,τ) and (Y,σ)(or simply X or Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the interior of A are denoted by Cl(A) and Int(A) respectively.

Definition 2.1: A subset A of a topological space X is said to be
1. regular open[5] if A = int (cl(A)).
2. π-open [8] if A is the finite union of regular open sets.

The complement of the above defined open sets are their respective closed sets in X.

Closure(r-closure) of A is the intersection of all closed (regular closed) sets containing A and Interior of A is the union of all open sets contained in A.

Definition 2.2: A subset A of X is called
1. g-closed[2] if cl (A)⊂U whenever A⊂U and U is open in X.
2. g*r-closed[5] if rcl(A)⊂U whenever A⊂U and U is open.
3. πg-closed[1] if cl(A)⊂ whenever A⊂U and U is π-open.
4. πgr-closed[3] if rcl(A)⊂ whenever A⊂U and U is π-open.

Definition 2.4: A topological space X is said to be
1. a normal space [7] if for every pair of disjoint closed subsets H and K, there exists disjoint open sets U and V of X such that H⊂U and K⊂V.
2. a quasi normal[7] if for every pair of disjoint π-closed subsets H and K, there exists disjoint open sets U and V of X such that H⊂U and K⊂V.
3. mildly normal[1] if for every pair of disjoint regular closed subsets H and K, there exists disjoint open sets U and V of X such that H⊂U and K⊂V.

Theorem 2.5: A subset A of a topological space X is πgr-open iff F⊂rint(A) whenever F is π-closed and F⊂A.
Definition 2.6: A function \(f: X \rightarrow Y \) is said to be
1. Almost closed [4][g-r-closed, πgr-closed] if \(f(F) \) is regular-closed (g*r-closed, πgr-closed) in \(Y \) for every closed set \(F \) of \(X \).
2. rc-preserving [4][almost g*r-closed, almost πgr-closed] if \(f(F) \) is regular closed(g*r- closed, πgr-closed) in \(Y \) for every regular closed set \(F \) of \(X \).
3. continuous[2][resp. almost continuous[6], π-continuous[1]] if \(f^1(F) \) is closed (resp. regular closed, \(π \)-closed) in \(X \) for every closed set \(F \) of \(Y \).
4. πgr-continuous [3] if \(f^1(F) \) is πgr-closed in \(X \) for every closed set \(F \) of \(Y \).

QUASI R-NORMAL SPACES.

Definition 3.1: A topological space \(X \) is said to be \(r \)-normal if for every pair of disjoint closed subsets \(H \) and \(K \), there exists disjoint regular open sets \(U \) and \(V \) of \(X \) such that \(H \subseteq U \) and \(K \subseteq V \).

Definition 3.2: A topological space \(X \) is said to be quasi \(r \)-normal (quasi regular normal) if for every pair of disjoint \(π \)-closed subsets \(H \) and \(K \), there exists disjoint regular open sets \(U \) and \(V \) of \(X \) such that \(H \subseteq U \) and \(K \subseteq V \).

Theorem 3.3: The following are equivalent for a space \(X \).

a) \(X \) is quasi \(r \)-normal.
b) For any disjoint \(π \)-closed sets \(H \) and \(K \), there exists disjoint g*r-open sets \(U \) and \(V \) such that \(H \subseteq U \) and \(K \subseteq V \).
c) For any disjoint \(π \)-closed sets \(H \) and \(K \), there exists disjoint g*r-open sets \(U \) and \(V \) such that \(H \subseteq U \) and \(K \subseteq V \).
d) For any \(π \)-closed set \(H \) any \(π \)-open set \(V \) containing \(H \), there exists an g*r-open set \(U \) of \(X \) such that \(H \subseteq U \subseteq rcl(U) \subseteq V \).
e) For any \(π \)-closed set \(H \) and \(π \)-open set \(V \) containing \(H \), there exists an \(π \)-gr-open set \(U \) of \(X \) such that \(H \subseteq U \subseteq rcl(U) \subseteq V \).

Proof: (a) \(\Rightarrow \) (b): Let \(X \) be quasi \(r \)-normal. Let \(H \) and \(K \) be disjoint \(π \)-closed sets in \(X \). By assumption, there exists disjoint regular open sets \(U, V \) such that \(H \subseteq U \) and \(K \subseteq V \). Since every regular open set is g*r-open, \(U \), \(V \) are g*r-open sets such that \(H \subseteq U \) and \(K \subseteq V \).

(b) \(\Rightarrow \) (c): Obvious.

e) \(\Rightarrow \) (d): Let \(H \) be any \(π \)-closed set and \(V \) be any \(π \)-open set containing \(H \). By assumption, there exists \(π \)-gr-open sets \(U \) and \(W \) such that \(H \subseteq U \) and \(X \setminus V \subseteq W \). By theorem 2.5, we get \(A \subseteq rcl(U), X \setminus rcl(W) \subseteq U \) and \(rcl(U) \cap rcl(U) = \phi \). Hence \(H \subseteq U \subseteq rcl(U) \subseteq X \setminus rcl(W) \subseteq V \).

d) \(\Rightarrow \) (e): Obvious.

(e) \(\Rightarrow \) (a): Let \(H, K \) be two disjoint \(π \)-closed sets of \(X \). Then \(H \subseteq X \setminus K \) and \(X \setminus K \) are \(π \)-open. By assumption there exists \(π \)-gr-open set \(G \) of \(X \) such that \(H \subseteq G \subseteq rcl(G) \subseteq X \setminus K \). Put \(U = r \text{ int } G \), \(V = X \setminus rcl(G) \). Then \(U \) and \(V \) are disjoint regular open sets of \(X \) such that \(H \subseteq U \) and \(K \subseteq V \).

Definition 3.4: A topological space \(X \) is said to be mildly \(r \)-normal if for every pair of disjoint regular closed sets \(H \) and \(K \) of \(X \), there exists disjoint regular open sets \(U \) and \(V \) of \(X \) such that \(H \subseteq U \) and \(K \subseteq V \).

Theorem 3.5: The following are equivalent for a space \(X \).

a) \(X \) is mildly \(r \)-normal.
b) For any disjoint regular closed sets \(H \) and \(K \), there exists disjoint g*r-open sets \(U \) and \(V \) such that \(H \subseteq U \) and \(K \subseteq V \).
c) For any disjoint regular closed sets \(H \) and \(K \), there exists disjoint g*r-open sets \(U \) and \(V \) such that \(H \subseteq U \) and \(K \subseteq V \).
d) For any regular closed set \(H \) any regular open set \(V \) containing \(H \), there exists an g*r-open set \(U \) of \(X \) such that \(H \subseteq U \subseteq rcl(U) \subseteq V \).
e) For any regular closed set \(H \) and each regular open set \(V \) containing \(H \), there exists a \(π \)-gr-open set \(U \) of \(X \) such that \(H \subseteq U \subseteq rcl(U) \subseteq V \).

Proof: Similar to that of above theorem 3.3.

Theorem 3.6: A surjection \(f: X \rightarrow Y \) is almost \(π \)-gr-closed iff for each subset \(S \) of \(Y \) and each regular open set \(U \) of \(X \) containing \(f^1(S) \), there exists a \(π \)-gr-open set \(V \) of \(Y \) such that \(S \subseteq V \) and \(f^1(V) \subseteq U \).

Proof: Necessity: Suppose that \(f \) is almost \(π \)-gr-closed. Let \(S \) be a subset of \(Y \) and \(U \) a regular open set containing \(f^1(S) \). If \(V = Y \setminus f(X \setminus U) \), then \(V \) is a \(π \)-gr-open set of \(Y \) such that \(S \subseteq V \) and \(f^1(V) \subseteq U \).
Sufficiency: Let F be any regular closed set of X. Then $\phi^1(Y - f(F)) \subset X - F$ and $X - F$ is regular open in X. There exists a πgr-open set V of Y such that $Y - f(F) \subset V$ and $\phi^1(V) \subset X - F$. Therefore, we have $Y - V \subset f(F)$ and $f(F) \subset \phi^1(Y - V)$. Hence we obtain $f(F) = Y - V$ and $f(F)$ is πgr-closed in Y which shows that f is almost πgr-closed.

Preservation theorems:

Theorem 3.7: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an almost πgr-continuous π-closed injection and Y is quasi -r-normal, then X is quasi-r-normal.

Proof: Let A and B be any two disjoint π-closed sets of X. Since f is a π-closed injection, $f(A)$ and $f(B)$ are disjoint π-closed sets of Y. Since Y is quasi-r-normal, there exists disjoint regular open sets G and H such that $f(A) \subset G$ and $f(B) \subset H$. Since f is almost πgr-continuous, $\phi^1(G)$ and $\phi^1(H)$ are disjoint πgr-open sets containing A and B which shows that X is quasi - r-normal.

Lemma 3.8: A surjection $f: (X, \tau) \rightarrow (Y, \sigma)$ is rc-preserving iff for each subset S of Y and each regular open set U of X containing $\phi^1(S)$ there exists a regular open set V of Y such that $S \subset V$ and $\phi^1(V) \subset U$.

Theorem 3.9: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a π-continuous, rc-preserving surjection and X is quasi-r-normal, then Y is r-normal.

Proof: Let A and B be any two disjoint closed sets of Y. Then $\phi^1(A)$ and $\phi^1(B)$ are disjoint π-closed sets of X. Since X is quasi-r-normal, there exists disjoint regular open sets G and H such that $\phi^1(A) \subset G$ and $\phi^1(B) \subset H$. Set $K = Y - f(X - G)$ and $L = Y - f(X - H)$. By lemma 3.8, K and L are regular open sets of Y such that $A \subset K$, $B \subset L$, $\phi^1(K) \subset G$, $\phi^1(L) \subset H$. Since G and H are disjoint and so K and L. Since K and L are regular open, we obtain $A \subset \text{rint}(K)$, $B \subset \text{rint}(L)$ and $\text{rint}(K) \cap \text{rint}(L) = \emptyset$. Therefore Y is r-normal.

Theorem 3.10: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a π-irresolute, almost πgr-closed surjection .If X is a quasi-r-normal space, then Y is quasi-r-normal.

Proof: Let A and B be any two disjoint π-closed sets of Y. Since f is π-irresolute, $\phi^1(A)$ and $\phi^1(B)$ are disjoint π-closed subsets of X. Since X is quasi-r-normal, there exists regular open sets G and H of X such that $\phi^1(A) \subset G$ and $\phi^1(B) \subset H$. By theorem 3.7, there exists πgr-open sets K and L of such that $A \subset K$ and $B \subset L$, $\phi^1(K) \subset G$, $\phi^1(L) \subset H$. Since G and H are disjoint, so $\text{rint}(K) \cap \text{rint}(L) = \emptyset$. Therefore, U is quasi -r-normal.

REFERENCES