The Proof and Application of Schwarz Integral Inequality

Caixia Zhang
College of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China

*Corresponding Author:
Caixia Zhang
Email: zhangcaixi6476 @163.com

Abstract: In mathematical analysis, Schwarz integral inequality is an important inequality. It is the basis for many inequalities. In this paper, six methods are given for proving Schwarz integral inequality. Furthermore, several examples are given in practical problems.

Keywords: integral; inequality; Schwarz integral inequality

Preliminary Knowledge

Schwarz integral inequality. If \(f(x) \) and \(g(x) \) are continuous on the closed interval \([a,b]\). Then

\[
\left(\int_a^b f(x)g(x)dx \right)^2 \leq \int_a^b f^2(x)dx \int_a^b g^2(x)dx.
\]

Lemma 1 (Cauchy inequality). Let \(a_i \) and \(b_i \) \((i=1,2,\ldots,n)\) are real numbers. Then

\[
(\sum_{i=1}^{n} a_i b_i)^2 \leq \sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2.
\]

Lemma 2[1]. Let \(f(x) \) is continuous on the closed interval \([a,b]\) and suppose that it is nonnegative and isn’t always zero. Then

\[
\int_a^b f(x)dx > 0.
\]

Several Methods about the Proof of Schwarz Integral Inequality

Proof 1[2]. In this part, we give out a method to prove Schwarz integral inequality by using Cauchy inequality. We divide the interval \([a,b]\) into isometric subinterval by means of points

\[
x_i = a + \frac{i}{n} (b - a), \quad i = 0, 1, 2, \ldots, n.
\]

If \(f(x) \) and \(g(x) \) are continuous on the closed interval \([a,b]\), then they are integrable. We have

\[
\int_a^b f(x)g(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(x_i) g(x_i),
\]

\[
\int_a^b f^2(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f^2(x_i),
\]

\[
\int_a^b g^2(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} g^2(x_i).
\]

By lemma 1, we get

\[
\left(\frac{b-a}{n} \sum_{i=1}^{n} f(x_i) g(x_i) \right)^2 \leq \frac{b-a}{n} \sum_{i=1}^{n} f^2(x_i) \cdot \frac{b-a}{n} \sum_{i=1}^{n} g^2(x_i).
\]

Therefore, let \(n \to \infty \), we obtain

\[
\left(\int_a^b f(x)g(x)dx \right)^2 \leq \int_a^b f^2(x)dx \int_a^b g^2(x)dx.
\]

Proof 2. In this part, we give out a method to prove Schwarz integral inequality by using the properties of definite integrals.

If \(\int_a^b f^2(x)dx = 0 \), by lemma 2 we get \(f(x) \equiv 0 \) and then \(\int_a^b f(x)g(x)dx = 0 \), so the formula is true.

In the same way, if \(\int_a^b g^2(x)dx = 0 \), then the formula is true.

Suppose that \(\int_a^b f^2(x)dx > 0 \), and \(\int_a^b g^2(x)dx > 0 \).

Let \(s = (\int_a^b f^2(x)dx)^{\frac{1}{2}} \), \(t = (\int_a^b g^2(x)dx)^{\frac{1}{2}} \), then \(st > 0 \), we have

\[
\left(\int_a^bf(x)g(x)dx \right)^2 = \int_a^b f^2(x)dx \int_a^b g^2(x)dx - \frac{2}{st} \int_a^b f(x)g(x)dx
\]

Therefore, we obtain

\[
\int_a^bf(x)g(x)dx \leq st = \left(\int_a^bf^2(x)dx \right)^{\frac{1}{2}} \cdot \left(\int_a^bg^2(x)dx \right)^{\frac{1}{2}}.
\]

That is,

\[
\left(\int_a^bf(x)g(x)dx \right)^2 \leq \int_a^bf^2(x)dx \int_a^bg^2(x)dx.
\]

Proof 3[3] In this part, we give out a method to prove Schwarz integral inequality by using double integrals.

Let \(I = \int_a^bf^2(x)dx \cdot \int_a^bg^2(x)dx \), \(D = \{(x, y)|a \leq x \leq b, a \leq y \leq b\} \). Then we have

\[
I = \int_D f^2(x)g^2(y)dxdy = \int_D f^2(y)g^2(x)dxdy.
\]

So we get

\[
I = \frac{1}{2} \int_D f^2(x)g^2(y) + f^2(y)g^2(x)dxdy \geq \frac{1}{2} \int_D 2 \sqrt{f^2(x)g^2(y) \cdot f^2(y)g^2(x)}dxdy
\]

\[
= \int_D |f(x)g(y)f(y)g(x)|dxdy = \int_D |f(x)g(x)||f(x)g(y)|dxdy = \left(\int_a^bf(x)g(x)dx \right)^2
\]

Because of \(\int_a^bf(x)g(x)dx \leq \int_a^bf(x)g(x)dx \), we obtain

\[
\left(\int_a^bf(x)g(x)dx \right)^2 \leq \int_a^bf^2(x)dx \int_a^bg^2(x)dx.
\]

Proof 4 In this part, we give out a method to prove Schwarz integral inequality by using the monotonicity of a function. Let \(F(x) = \int_a^x f^2(t)dt \cdot \int_a^x g^2(t)dt - \left(\int_a^x f(t)g(t)dt \right)^2 \).

If \(f(x) \) and \(g(x) \) are continuous on the closed interval \([a,b]\), then \(F(x) \) is derivable on this closed interval. We have

\[
F''(x) = f^2(x) \int_a^x g^2(t)dt + g^2(x) \int_a^x f^2(t)dt - 2 f(x)g(x) \int_a^x f(t)g(t)dt
\]

\[
= \int_a^x (f(x)g(t) - f(t)g(x))^2 dt \geq 0.
\]

Therefore, \(F(x) \) is a monotonic and nondecreasing function on the closed interval \([a,b]\).

That is \(F(b) \geq F(a) = 0 \). So we obtain

\[
\left(\int_a^x f(x)g(x)dx \right)^2 \leq \int_a^b f^2(x)dx \int_a^bg^2(x)dx.
\]

Proof 5 In this part, we give out a method to prove Schwarz integral inequality by using the mean value theorem of differentials.

Available Online: http://saspjournals.com/sipms
Let \(F(x) = \int_a^x f^2(t)dt \cdot \int_a^x g^2(t)dt - \left(\int_a^x f(t)g(t)dt \right)^2 \), and \(F(x) \) meet the conditions of the mean value theorem of differentials, then we have

\[
F(b) - F(a) = F'(\xi)(b-a) = (b-a)\int_a^b \left[f(\xi)g(t) - f(t)g(\xi) \right]^2 dt \geq 0.
\]

That is \(F(b) \geq F(a) = 0 \). So we obtain

\[
\left(\int_a^b f(x)g(x)dx \right)^2 \leq \int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx.
\]

Proof 6 In this part, we give out a method to prove Schwarz integral inequality by using the discriminant of quadratic equation with one unknown. For any real number \(t \), we have \(|ff(x) + g(x)|^2 \geq 0 \).

Integrating the above formula with respect to \(x \) once, we yield

\[
t^2 \int_a^b f^2(x)dx + 2t \int_a^b f(x)g(x)dx + \int_a^b g^2(x)dx \geq 0.
\]

The discriminant is

\[
\Delta = (2\int_a^b f(x)g(x)dx)^2 - 4\int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx \leq 0.
\]

So we obtain

\[
\left(\int_a^b f(x)g(x)dx \right)^2 \leq \int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx.
\]

Several Examples about the Application of Schwarz Integral Inequality

Example 1 Let \(f(x) \) is continuous on the closed interval \([a,b] \) and \(f(a) = 0 \), show that

\[
\int_a^b f^2(x)dx \leq \frac{(b-a)^2}{2} \int_a^b [f'(x)]^2dx.
\]

Proof Because of \(f(a) = 0 \), then we obtain \(f(x) = \int_a^x f'(t)dt \).

By using Schwarz integral inequality, we have

\[
f^2(x) = [\int_a^x f'(t)dt]^2 \leq (\int_a^x [f'(x)]^2 dx)(x-a) \leq (x-a)\int_a^b [f'(x)]^2 dx
\]

Integrating the above formula with respect to \(x \) once, we yield

\[
\int_a^b f^2(x)dx \leq \int_a^b [f'(x)]^2 dx \cdot \int_a^b (x-a)dx = \frac{(b-a)^2}{2} \int_a^b [f'(x)]^2 dx.
\]

Example 2 Let \(f(x) \) is continuous on the closed interval \([a,b] \) and \(f(x) \geq 0 \), \(\int_a^b f(x)dx = 1 \).

Show that \(\left(\int_a^b f(x)\sin \lambda xdx \right)^2 + \left(\int_a^b f(x)\cos \lambda xdx \right)^2 \leq 1 \).

Proof By using Schwarz integral inequality, we have

\[
\left(\int_a^b f(x)\sin \lambda xdx \right)^2 = \left(\int_a^b \sqrt{f(x)} \cdot \sqrt{f(x)\sin \lambda x}dx \right)^2
\]

\[
\leq \int_a^b f(x)dx \cdot \int_a^b f(x)\sin^2 \lambda xdx = \int_a^b f(x)\sin^2 \lambda xdx.
\]

In the same way, we get

\[
\left(\int_a^b f(x)\cos \lambda xdx \right)^2 \leq \int_a^b f(x)\cos^2 \lambda xdx.
\]

Therefore,

\[
\left(\int_a^b f(x)\sin \lambda xdx \right)^2 + \left(\int_a^b f(x)\cos \lambda xdx \right)^2 \leq \int_a^b f(x)\sin^2 \lambda xdx + \int_a^b f(x)\cos^2 \lambda xdx = 1.
\]

Example 3 If \(f(x) \) and \(g(x) \) are continuous on the closed interval \([a,b] \) and suppose that \(f(x) \) isn't always zero and \(g(x) > 0 \). Let \(T_n = \int_a^b |f(x)|^n g(x)dx, \ n = 1,2,3 \ldots \).

Show that \(\lim_{n \to \infty} \frac{T_{n+1}}{T_n} = \max_{a \leq x \leq b} |f(x)| \).

Proof By using Schwarz integral inequality, we have
\[T_n = \int_a^b |f(x)|^n g(x) \, dx = \int_a^b \sqrt[n]{g(x)} |f(x)|^{n-1} \cdot \sqrt[n]{g(x)} f(x) \, dx \]
\[\leq \left(\int_a^b g(x) |f(x)|^{n-1} \, dx \right)^{\frac{1}{2}} \cdot \left(\int_a^b g(x) |f(x)|^n \, dx \right)^{\frac{1}{2}} = T_{n-1}^{\frac{1}{2}} \cdot T_n^{\frac{1}{2}}. \]

Because \(f(x) \) isn’t always zero and \(g(x) > 0 \), then we obtain \(|f(x)|^n g(x) \geq 0 \), and \(|f(x)|^n g(x) \) isn’t always zero.

By lemma 2, we get \(T_n > 0 \). And then, \(T_{n-1}^2 \leq T_n T_{n-1} \), \(T_n \geq T_n^{\frac{1}{2}} \cdot T_n^{\frac{1}{2}} \), the sequence \(\{ T_n \} \) is monotonic increasing.

If \(f(x) \) is a continuous function on a closed interval \([a, b] \), then \(|f(x)| \) has an absolute maximum on this interval. So there is a \(x_0 \in [a, b] \), such that \(f(x_0) = \max_{a \leq x \leq b} |f(x)| = M > 0. \)

Then we obtain
\[0 \leq \frac{T_{n+1}}{T_n} = \frac{\int_a^b g(x) |f(x)|^{n+1} \, dx}{\int_a^b g(x) |f(x)|^n \, dx} \leq \frac{M \int_a^b g(x) |f(x)|^n \, dx}{\int_a^b g(x) |f(x)|^n \, dx} = M. \]

From the above formula, we know the sequence \(\{ \frac{T_{n+1}}{T_n} \} \) has an upper bound. Therefore, its limit exists. That is,
\[\lim_{n \to \infty} \frac{T_{n+1}}{T_n} = \lim_{n \to \infty} \left(\int_a^b g(x) |f(x)|^n \, dx \right)^{\frac{1}{2}}. \]

Next, we shall prove the following formula
\[\lim_{n \to \infty} \left(\int_a^b g(x) |f(x)|^n \, dx \right) = M. \]

On the one hand, the function \(|f(x)| \) is continuous at \(x_0 \). For any given positive number \(\varepsilon \), there is an interval \([\alpha, \beta] \subseteq [a, b] \), such that if \(x \in [\alpha, \beta] \), then \(|f(x)| > M - \varepsilon \). We have
\[\left(\int_a^b g(x) |f(x)|^n \, dx \right) \geq \left(\int_a^b g(x) |f(x)|^n \, dx \right) \geq (M - \varepsilon) \left(\int_a^b g(x) \, dx \right) \to (M - \varepsilon)(n \to \infty). \]

Because of the arbitrariness of \(\varepsilon \), we get
\[\left(\int_a^b g(x) |f(x)|^n \, dx \right) \geq M. \]

On the other hand,
\[\left(\int_a^b g(x) |f(x)|^n \, dx \right) \leq \left(\int_a^b M^n g(x) \, dx \right) = M \left(\int_a^b g(x) \, dx \right) \to M \ (n \to \infty). \]

Therefore,
\[\lim_{n \to \infty} \left(\int_a^b g(x) |f(x)|^n \, dx \right) = M. \]
That is,
\[\lim_{n \to \infty} \frac{T_{n+1}}{T_n} = \max_{a \leq x \leq b} |f(x)|. \]

CONCLUSIONS

Schwarz integral inequality is a kind of important inequality in mathematical analysis, which is broadly used in mathematical analysis. The study of integral inequality can help us not only solve some integral inequality of equation, but also put the primary mathematics knowledge and higher mathematics knowledge together to improve our ability of thinking and innovation. This paper gives out a few methods to prove inequality and by which we can simply and quickly solve the problem. Meanwhile it introduces the method of applying Schwarz integral inequality to prove some questions by giving several examples.

Acknowledgements: I would like to thank the referees and the editor for their valuable suggestions.
REFERENCES