Discussion on a Kind of Sequence Limit
Zhongkui Zhao

College of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China

*Corresponding Author:
Zhongkui Zhao
Email: zzk600920@163.com

Abstract: In this paper, we give four theorems and proved them. According to these four theorems, we deduce the solver method for the limit of a class of sequence \(\{x_n\} \) by recursive relation \(x_n = f(x_{n-1}) \).

Keywords: limit of a sequence, recursion formula, mathematical induction limit of sequence

PROBLEM POSING
For a special class of infinite series \((n=1,2,L) \), If sequence of \(\{x_n\} \) satisfies the recursive formula of \(x_n = f(x_{n-1}) \), we can discuss the limit of \(\{x_n\} \) \((n=1,2,L)\) according to the property of \(f'(x) \) [1]. So we give four theorems as follows.

FOUR THEOREMS
Theorem 1
If in \([a,b]\) equation \(x = f(x) \) has a unique root \(\xi \), and
\[|f'(x)| \leq q < 1, \ x_0 \] is any real number in \([\xi - x_0, \xi + x_0]\), then sequence :
\[x_1 = f(x_0), x_2 = f(x_1), ... x_n = f(x_{n-1}) \]
convergence to \(\xi \).

Proof
According to \(x_1 - f(x_0) = \xi - f(\xi) \) and Lagrange Mean Value Theorem[2]
\[|x_1 - x_0| = |x_1 - x_0| |f'(c)| \leq |f'(c)| < q < |\xi - x_0| \ (\xi < c < x_0) \],
so \(x_1 \) is closer to \(\xi \) than \(x_0 \), moreover, as \(|x_1 - x_0| \leq \min\{(|\xi - a|, |b - \xi|)\} \), so \(x_1 \in [a,b] \).

By mathematical induction[3], we can deduce \(x_n \in [a,b] \) \((n=1,2,L)\). According to
\[x_{n+1} - f(x_n) = x_n - f(x_{n-1}) \]
and Lagrange Mean Value Theorem :
\[|x_{n+1} - x_n| = |x_{n+1} - x_{n-1}| |f'(c_{n})| \].

Since \(x_n \in [a,b] \), \(c_n \) is between \(x_n \) and \(x_{n-1} \), so \(c_n \in [a,b] \), \(|f'(c_n)| \leq q < 1 \). Therefore
\[|x_{n+1} - x_n| \leq |x_n - x_{n-1}| q \].

And then
\[|x_{n+1} - x_n| \leq q^n |x_1 - x_0|, |x_{n+p} - x_n| \leq |x_1 - x_0| \leq \frac{q^n}{1-q} |x_1 - x_0| \].

When \(n \to \infty, q^n \to 0 \), so \(\lim_{n \to \infty} x_n \) is extant. By the continuity of \(f(x) \), \(\lim_{n \to \infty} x_n = f(\lim_{n \to \infty} x_{n-1}) \), and the uniqueness of \(\xi \) in \([a,b]\), \(\lim_{n \to \infty} x_n = \xi \).
Theorem 2 If \(f = f(x) \) has real root \(\xi_i \) (\(i = 1, 2, 3, \ldots, m \)) \(f(x) \) has derivative in every point. And \(|f'(\xi_i)| > 1 \), for any real number \(x_0 \), the follow sequence is diverging:

\[
x_i = f(x_{i-1}), x_2 = f(x_1), \ldots, x_n = f(x_{n-1}), \ldots \text{ (if } i \neq j \text{ then } x_i \neq x_j)\]

Proof If \(x_n = f(x_{n-1}) \), sequence \(\{ x_n \} \) must converge to some real number \(\xi_N \) (\(1 \leq N \leq m \)).

By \(x_n - f(x_{n-1}) = \xi_n - f(\xi_n) \) and Lagrange Mean Value Theorem, we can derive \(|\xi_N - x_n| \Rightarrow |f'(\xi_n)| \) (\(n \rightarrow \infty \)).

Since \(c \) is between \(\xi_N \) and \(x_{n-1} \), \(x_n \rightarrow \xi_N \) (\(n \rightarrow \infty \)), we can know \(\xi_N \) is tenable.

Theorem 3 If in \([a, b]\) equation \(x = f(x) \) has a unique root \(\xi \), \(f'(x) < 0 \), and \(f(a) \in [a, b] \). \(f(b) \in [a, b] \), \(x_0 \in [a, b] \), then sequence:

\[
x_1 = f(x_0), x_2 = f(x_1), x_{2m+1} = f(x_{2m}), x_{2m+2} = f(x_{2m+1})\]

and \(x_2 = f(x_1), x_4 = f(x_3), x_{2m} = f(x_{2m-1}) \) are both convergent.

Proof We might as well let \(x_0 = b \) (\(x_0 \) is any value in \([a, b]\), the proof is same as this) . According to \(x_1 - f(b) = \xi - f(\xi) \) and \(f'(x) < 0 \), \(\xi < b \), we can derive \(x_1 < \xi \). By \(x_2 - f(x_1) = \xi - f(\xi) \) and \(f'(x) < 0 \), \(x_2 < \xi \), we can know \(x_2 > \xi \). \(x_{2m} > \xi > x_{2m+1} \) \((m = 0, 1, 2, \ldots) \) can be proved by mathematical induction.

Set \(x_1 = f(a) \), by \(x_2 - f(x_1) = x_1 - f(a) \) and \(f'(x) < 0 \), \(x_1 \geq a \), we can deduce \(x_2 \leq x_1 \). we have known \(x_1 \leq b \) \((x_1 \in [a, b]) \), so \(x_2 \leq b \).

As \(x_3 - f(x_2) = x_2 - f(b) \) and \(f'(x) < 0 \), \(x_2 \leq b \), then \(x_3 \leq x_2 \), By \(x_2 - f(x_1) = x_2 - f(x_3) \) and \(f'(x) < 0 \), \(x_1 \leq x_3 \), we can know \(x_4 \leq x_2 \).

So \(x_{2m-1} \leq x_{2m+1} \leq x_{2m} \leq x_{2m-2} \) \((m = 0, 1, 2, \ldots) \) might be proved by mathematical induction. In conclusion, then

\[
x_{2m-1} \leq x_{2m+1} \leq x_{2m} \leq x_{2m-2} \quad (m = 0, 1, 2, \ldots)[3],
\]

so we can see \(\lim_{m \rightarrow \infty} x_{2m+1} \) and \(\lim_{m \rightarrow \infty} x_{2m} \) are both existent[4].

Theorem 4 If in \([a, b]\) equation \(x = f(x) \) has a unique root \(\xi \), and \(0 < f'(x) < 1 \), \(x_0 \in [a, b] \), then sequence:

\[
x_1 = f(x_0), x_2 = f(x_1), x_n = f(x_{n-1})\]

converge to \(\xi \).
Proof We might as well let \(x_0 = b \). According to \(0 < f'(x) < 1 \), we can derive \(1 - f'(x) > 0 \). So \(x - f(x) \) is monotone increasing, so that \(b - f(b) > 0 \), \(a - f(a) < 0 \). By \(f'(x) > 0 \), we can know \(a - f(b) < a - f(a) < 0 \). So monotone continuous function \(x - f(b) \) in the two endpoints of \([a, b]\) has opposite signs. So that \(x_1 = f(b) \in [a, b] \). As \(x_1 - f(b) = \xi - f(\xi) \) and \(f'(x) > 0 \), \(b > \xi \), then \(x_1 > \xi \). So \(x_n > \xi \) \((n = 0, 1, 2, L)\) might be proved by mathematical induction. By \(x_1 - f(b) = x_2 - f(x_1) \), \(f'(x) > 0 \), \(b > x_1 \), we can know \(x_1 > x_2 \). By mathematical induction we can prove \(x_n > x_{n+1} \) \((n = 0, 1, 2, L)\), so that \(\xi < x_{n+1} < x_n \) \((n = 0, 1, 2, L)\). So \(\lim_{n \to \infty} x_n \) is existent. By \(x_n = f(x_{n-1}) \) we can infer

\[
\lim_{n \to \infty} x_n = f(\lim_{n \to \infty} x_{n-1})
\]

Since \(\xi \) is unique in \([a, b]\), we can infer \(\lim_{n \to \infty} x_n = \xi \).

APPLICATION EXAMPLE

Example 1 Sequence \(\{ x_n \} \) is as follows.

\[
x_1 = \sqrt{2}, x_2 = \sqrt{2 + \sqrt{2}, L} , x_n = \sqrt{2 + \sqrt{2 + \ldots + \sqrt{2}, L}}
\]

Solving \(\lim_{n \to \infty} x_n \)[5].

Solving \(x = \sqrt{x + 2} \), the solution is 2. In \([0,4]\), the equation has a unique solution 2, and

\[
| (\sqrt{x + 2})' | = \left| \frac{1}{2\sqrt{x + 2}} \right| < \frac{1}{2} < 1 , \text{let} \ x_0 = 0 , \text{it meets qualifications of Theorem 1, so} \ \lim_{n \to \infty} x_n = 2 .
\]

Example 2 Solving \(\lim_{n \to \infty} (a + a^2 + \ldots + a^n) \) \((|a| < 1)\).

Solving \(x = ax + a \), the solution is \(x = \frac{a}{1-a} \). In \([0, \frac{2a}{1-a}] \) it has a unique solution \(\frac{a}{1-a} \) (we might as well set \(a > 0 \)) , and \(| (ax + a) ' | = |a| < 1 \). Let \(x_0 = 0 \), we can know it meets qualifications of Theorem 1, so

\[
\lim_{n \to \infty} (a + a^2 + \ldots + a^n) = \frac{a}{1-a} . \text{If} \ a \leq 0 (|a| < 1) , \ \lim_{n \to \infty} (a + a^2 + \ldots + a^n) = \frac{a}{1-a} .
\]

When \(|a| < 1 \),

\[
\lim_{n \to \infty} (a + a^2 + \ldots + a^n) = \frac{a}{1-a} .
\]

When \(|a| > 1 \), we can infer \(| (ax + a) ' | = |a| > 1 \). Using theorem 2 we can know sequence:

\[
x_i = a, x_2 = a + a^2 , \ldots , x_n = a + a^2 + \ldots + a^n , \ldots \ (i \neq j \parallel j , \ x_i \neq x_j) \text{ is divergent.}
\]

CONCLUSION

In general, through the four theorems we can deduce the solver method for the limit of a class of sequence \(\{ x_n \} \) by recursive relation \(x_n = f(x_{n-1}) \).
First, solving \(x = f(x) \) we got all the real number solutions \(\xi_i \ (i = 1, 2, L, m) \). Sequence \(\{ x_n \} \) converge to and can only converge to some \(\xi_i \). And according to the features of sequence \(\{ x_n \} \), we set a range \([a, b]\) which include a \(\xi_i \), by theorem 1, if we can find a \(x_0 \) that satisfied \(|\xi_i - x_0| \leq \min\{ (\xi_i - a), (b - \xi_i) \} \), let \(x_n = f(x_{n-1}) \)

\((n = 0, 1, 2, L) \) be tenable, then we can conclude \(\lim_{n \to \infty} x_n = \xi_i \). By the theorem 4, if we can find a \(x_0 \) in \([a, b]\), let \(x_n = f(x_{n-1}) \) \((n = 0, 1, 2, L) \) be tenable, then we can conclude \(\lim_{n \to \infty} x_n = \xi_i \). If \(|f'(\xi_i)| > 1 \) \((i = 1, 2, L) \), we can know sequence is divergent by theorem 4. If theorem 1, theorem 2, theorem 4 can not solve the question, we can use theorem 3 solve it. And when \(|f'(\xi_i)| = 1 \), the convergence of sequence \(\{ x_n \} \) is uncertain.

REFERENCES