A Specific Formula to Compute the Determinant of One Matrix of Order \(n \)

Ber-Lin Yu

Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai’an, Jiangsu, 223003, P. R. China

*Corresponding Author:
Ber-Lin Yu
Email: berlinyu@163.com

Abstract: Let \(A = [\alpha_{ij}] \) be an \(n \times n \) matrix, where \(\alpha_{ij} = \frac{1}{a_i + b_j} \), \(i, j = 1, 2, \ldots, n \). In this paper, we establish a specific formula to calculate the determinant of matrix \(A \).

Keywords: Determinant; Matrix; Laplace Theorem.

Introduction

Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and the determinant can be used to solve those equations, although more efficient techniques are actually used, some of which are determinant-revealing and consist of computationally effective ways of computing the determinant itself. For an \(n \times n \) matrix \(A \), its determinant is defined as

\[
|A| = \sum_{\sigma} \text{sign}(\sigma) \prod_{i=1}^{n} \alpha_{\sigma(i)},
\]

where the sum runs over all \(n! \) permutations \(\sigma \) of the \(n \) items \(1, 2, \ldots, n \) and the \text{sign} of a permutation \(\sigma \), \(\text{sign}(\sigma) \) is \(+1 \) or \(-1 \), according to whether the minimum number of transpositions, or pair-wise interchanges, necessary to achieve it starting from \(1, 2, \ldots, n \) is even or odd. Thus, each product

\[
\prod_{i=1}^{n} \alpha_{\sigma(i)}
\]

enters into the determinant with a + sign if the permutation \(\sigma \) is even or a − sign if it is odd. The most fundamental and naive method of implementing an algorithm to compute the determinant is to use Laplace's formula [1] for expansion by cofactors, i.e.,

\[
|A| = \sum_{j=1}^{n} \alpha_{ij} A_{ij}, i = 1, 2, \ldots, n,
\]

where \(A_{ij} \) which is called the cofactor of \(\alpha_{ij} \), is a product of \((-1)^{i+j} \) and the minor resulting from the deletion of row \(i \) and column \(j \). This approach is extremely inefficient in general, however, as it is of order \(n! \) for an \(n \times n \) matrix. Consequently, those determinants which have special constructors are investigated. There are a series of literatures about this topic, such as the referenced [2–6] and the references therein.

In this paper, we focus on an \(n \times n \) matrix \(A = [\alpha_{ij}]_{n \times n} \), where \(\alpha_{ij} = \frac{1}{a_i + b_j} \), \(i, j = 1, 2, \ldots, n \). One specific formula to calculate the determinant of matrix \(A \) is established.

Main result and its proof

To state clearly, let \(D_n \) be the determinant of the \(n \times n \) matrix \(A = [\alpha_{ij}] \). For \(n = 1 \), the conclusion is trivial. In general, assume that \(n \geq 2 \). Our main result is to establish a specific formula to compute \(D_n \).
Theorem 1. For \(n \geq 2 \),
\[
D_n = \frac{\prod_{j=2}^{n} (a_j-a_i)(b_j-b_i)}{\prod_{j=1}^{n} (a_j+b_j)}.
\]

Proof. We complete the proof by induction on the order \(n \) of matrix \(A \). For \(n = 2 \), we obtain
\[
D_2 = \begin{pmatrix}
1 & 1 \\
\frac{1}{a_1+b_1} & \frac{1}{a_1+b_2}
\end{pmatrix}
\]
\[
= \frac{1}{a_1+b_1} \times \frac{1}{a_2+b_1} - \frac{1}{a_1+b_2} \times \frac{1}{a_2+b_1}
\]
\[
= (a_1+b_2)(a_2+b_1) - (a_1+b_1)(a_2+b_2)
\]
\[
= (a_1+b_2)(a_2+b_1)(a_1+b_2)(a_2+b_1)
\]
\[
= (a_1-a_2)(b_1-b_2).
\]

It follows that Theorem 1 holds when \(n = 2 \).

Now, we assume that Theorem 1 holds when \(n = k \), where \(k \geq 2 \). That is to say,
\[
D_k = \frac{\prod_{j=2}^{k} (a_j-a_i)(b_j-b_i)}{\prod_{j=1}^{k} (a_j+b_j)}.
\]

Then when \(n = k+1 \),
\[
D_{k+1} = \begin{pmatrix}
1 & 1 & 1 \\
\frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} & \frac{1}{a_1+b_{k+1}} \\
\frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} & \frac{1}{a_2+b_k} \\
\vdots & \ddots & \vdots \\
\frac{1}{a_{k+1}+b_1} & \frac{1}{a_{k+1}+b_2} & \frac{1}{a_{k+1}+b_{k+1}}
\end{pmatrix}
\]

By adding column 1 multiplied by a scalar \(-1\) to column \(j \) for \(j = 2, 3, \ldots, k+1 \), we obtain that
By adding row 1 multiplied by a scalar −1 to row \(j \), \(j = 2, 3, \ldots, k+1 \), we obtain that

\[
D_{k+1} = \begin{vmatrix}
1 & \frac{b_1 - b_2}{a_1 + b_1} & \cdots & \frac{b_1 - b_{k+1}}{a_1 + b_1} \\
a_2 + b_1 & \frac{b_1 - b_2}{a_2 + b_2} & \cdots & \frac{b_1 - b_{k+1}}{a_2 + b_2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k+1} + b_1 & \frac{b_1 - b_2}{a_{k+1} + b_{k+1}} & \cdots & \frac{b_1 - b_{k+1}}{a_{k+1} + b_{k+1}}
\end{vmatrix}
\]

\[
= \frac{1}{\prod_{i=1}^{k+1} (a_i + b_i)} \begin{vmatrix}
1 & \frac{1}{a_1 + b_1} & \cdots & \frac{1}{a_1 + b_{k+1}} \\
\frac{a_2 - a_1}{a_2 + b_2} & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_2 + b_{k+1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{k+1} - a_k}{a_{k+1} + b_{k+1}} & \frac{1}{a_{k+1} + b_{k+1}} & \cdots & \frac{1}{a_{k+1} + b_{k+1}}
\end{vmatrix}
\]

By Laplacian Theorem and row-multiplying transformations, we have

\[
D_{k+1} = \frac{\prod_{i=2}^{k+1} (a_i - a_{i-1})(a_i + a_{i-1})}{(a_1 + b_1)\prod_{i=2}^{k+1} (a_i + b_i)(a_i + b_{i-1})} \begin{vmatrix}
1 & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_2 + b_{k+1}} \\
\frac{a_3 - a_2}{a_3 + b_3} & \frac{1}{a_3 + b_3} & \cdots & \frac{1}{a_3 + b_{k+1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{k+1} - a_{k}}{a_{k+1} + b_{k+1}} & \frac{1}{a_{k+1} + b_{k+1}} & \cdots & \frac{1}{a_{k+1} + b_{k+1}}
\end{vmatrix}
\]

It is clear that

\[
\begin{vmatrix}
1 & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_2 + b_{k+1}} \\
\frac{a_3 - a_2}{a_3 + b_3} & \frac{1}{a_3 + b_3} & \cdots & \frac{1}{a_3 + b_{k+1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{k+1} - a_{k}}{a_{k+1} + b_{k+1}} & \frac{1}{a_{k+1} + b_{k+1}} & \cdots & \frac{1}{a_{k+1} + b_{k+1}}
\end{vmatrix}
\]

is a determinant of order \(k \). By the assumption, we have
\[
\begin{array}{cccc}
1 & & 1 \\
\frac{a_2 + b_2}{a_{k+1} + b_2} & \ddots & \frac{a_{k+1} + b_{k+1}}{a_{k+1} + b_{k+1}} \\
\vdots & \ddots & \vdots \\
\frac{a_{k+1} + b_2}{a_{k+1} + b_{k+1}} & \frac{a_2 + b_2}{a_{k+1} + b_{k+1}} & \frac{1}{1}
\end{array}
\]

Consequently,

\[
D_{k+1} = \frac{\prod_{i=2}^{k+1} (b_i - a_i)(a_i - a_i) \prod_{j=2}^{k+1} (a_j - a_j)(b_j - b_j)}{(a_i + b_i) \prod_{i=2}^{k+1} (a_i + b_i)(a_i + b_i) \prod_{j=2}^{k+1} \prod_{i=2}^{k+1} (a_i + b_j)}.
\]

Simplifying the above equality leads to

\[
D_{k+1} = \frac{\prod_{j=2}^{k+1} (a_j - a_i)(b_j - b_i)}{\prod_{j=1}^{k+1} \prod_{i=1}^{k+1} (a_i + b_j)}.
\]

By induction, we obtain that for \(n \geq 2 \),

\[
D_n = \frac{\prod_{j=2}^{n} (a_j - a_i)(b_j - b_i)}{\prod_{j=1}^{n} \prod_{i=1}^{n} (a_i + b_j)}.
\]

Acknowledgement

This research is supported by Sci. & Tech. Research Fund of Huaiyin Institute of Technology.

References