A Numerical Solution for Fractional Damped Mechanical Oscillator Equation
Gül Gözde Biçer Şarlak¹, Ayşe Anapalı¹, Yalçın Öztürk², Mustafa Gülsu¹
¹Department of Mathematics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
²Ula Ali Kocman Vocational High School, Ula, Mugla, Turkey

*Corresponding author
Gül Gözde Biçer Şarlak

Article History
Received: 14.10.2017
Accepted: 25.10.2017
Published: 30.10.2017

DOI: 10.21276/sjpms.2017.4.4.3

Abstract: In this article, we have investigated the numerical approach for solving the fractional damped mechanical oscillator equation, which has an important role in fractional calculus. Damped mechanical oscillator equation is solved by Bernoulli collocation method with the aid of the computer symbolic language of Maple2016. This method transforms the damped mechanical oscillator equation into matrix equations. Then, the problem has been reduced to solving linear algebraic equations.

Keywords: Damped mechanical oscillator equation, Fractional differential equation, Collocation method, Bernoulli polynomials, approximate solution

INTRODUCTION
Fractional calculus has become the focus of interest for many researchers in different disciplines of applied science and engineering. Nowadays notable contributions have been made theory and applications of the fractional differential equations (FDEs). Several problems can be modelling with the help of the FDEs in many areas such as seismic analysis, viscous damping, viscoelastic materials and polymer physics [1-3]. Many authors have been examining the possibility of using fractional derivatives in material modelling last decades [4]. Uniqueness of solutions to the FDEs and the analytic results on the existence has been investigated by many authors [5-6]. In general, most of FDEs do not have exact analytic solutions, so we need approximate solution and numerical techniques, for this reason many techniques are developed by many researchers. For example Adomian decomposition method, the homotopy-perturbation method, the variational iteration method and the homotopy analysis method [7-12].

In this study, the damped mechanical oscillator equation is defined by

\[D^\alpha y(x) + \lambda y(x) + \nu y(x) = f(x), \; t \in [0,1] \] (1)

\[D^\beta y(c) = \lambda_i, \; i = 0,1,...,n-1, \] (2)

where \(1 < \alpha \leq 2.0 < \beta \leq 1, \alpha - \beta > 1 \) and \(f(x) \) is the forcing function.[13] According to the cases \(\alpha = 2, \beta = 1 \) Eq(1) can be referred to as the usual harmonic oscillator equation[14]. In this paper we use the collocation method for solving fractional damped mechanical oscillator equation[15]. We investigate the approximate solution of Eq.(1) with the fractional truncated Bernoulli series as

\[y_n(x) = \sum_{n=0}^{N} a_n B^\alpha_n (x) \] (3)

where \(0 < \alpha \leq 1 \).

BASIC DEFINITIONS
In this section, we first give some basic definitions and then present properties of fractional calculus[2].
Definition 2.1 A real function \(f(x) \), \(x > 0 \), is said to be in space \(C_\mu \), \(\mu \in R \) if there exist a real number \(p (> \mu) \), such that \(f(x) = x^p f_1(x) \), where \(f_1(x) \in [0, \infty) \), and it is said to be in the space \(C_\mu \) iff \(f^{(m)} \in C_\mu \), \(m \in N \).

Definition 2.2 The Riemann-Liouville fractional derivative of order \(\alpha \) with respect to the variable \(t \) and with the starting point at \(t = a \) is
\[
\mathcal{D}_t^\alpha f(t) = \left(\frac{d}{dt} \right)^{n+1} \int_a^t (t-\tau)^{n-\alpha} f(\tau) d\tau
\]
for \(n - 1 \leq \alpha < n \), \(n \in N \), \(t > 0 \), \(f \in C^-_\alpha \). Some properties of the Caputo fractional derivative, which are needed here as follows,
\[
D^n C = 0, \ C \text{ is a constant.}
\]
\[
D^\alpha x^\beta = \begin{cases}
\frac{\Gamma(\beta + 1)}{\Gamma(\beta + 1 - \alpha)}x^{\beta - \alpha}, & \text{for } \beta \in N \cup \{0\}, \beta \geq \lfloor \alpha \rfloor \text{ or } \beta \notin N, \beta > \lfloor \alpha \rfloor \\
0, & \text{for } \beta \in N \cup \{0\}, \beta < \lfloor \alpha \rfloor
\end{cases}
\]
where the ceiling function \(\lfloor \alpha \rfloor \) denotes the smallest integer greater than or equal \(\alpha \) and the floor function \(\lfloor \alpha \rfloor \) denotes the largest integer less than or equal to \(\alpha \).

Fundamental Relations
In this section, we consider the fractional differential equations
\[
\sum_{k=0}^{n} P_k(x) D_{x^\alpha}^{k} y(x) = f(x), \ a \leq x \leq b, \ 0 \leq \alpha \leq 1
\]
with initial conditions
\[
D_{x^\alpha}^{i} y(c) = \lambda_i, \ i = 0, 1, ..., n - 1, \ a \leq c \leq b
\]
which \(P_k(x) \) and \(f(x) \) are functions defined on \(a \leq x \leq b \), \(\lambda_i \) is a appropriate constant. We use the collocation method to find the truncated fractional Bernoulli series and their matrix representations for solving \(m \alpha \)-th order linear fractional differential equation with constant coefficients. We first consider the solution \(y(x) \) of Eq. (1) defined by a truncated fractional Bernoulli series (3). Then, we have the matrix form of the solution \(y(x) \)
\[
[y(x)] = [B^\alpha(x)]A
\]
where
\[
B^\alpha(x) = \begin{bmatrix} B_0^\alpha(x) & B_1^\alpha(x) & B_2^\alpha(x) & ... & B_n^\alpha(x) \end{bmatrix}
\]
\[
A = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}
\]
On the other hand, fractional Bernoulli polynomials are,

$$B^\alpha_n(x) = \sum_{i=0}^{N} \binom{N}{i} \frac{x}{i+\alpha} b_{N-i} \quad \alpha > 0, b_{N-i} = B_{N-i}(0) \text{ Bernoulli numbers.} \quad (7)$$

Matrix representation of Eq.(7) is,

$$B^\alpha(x) = X^\alpha(x)S \quad (8)$$

where

$$X^\alpha(x) = \begin{bmatrix} 1 & x^\alpha & x^{2\alpha} & \cdots & x^{N\alpha} \end{bmatrix}$$

$$S = \begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_N \\ 0 & b_0 & b_1 & \cdots & b_{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_{N-2} \end{bmatrix}$$

By substituting (6) into (8), we obtain

$$[y(x)] = X^\alpha(x)SA \quad (9)$$

Similarly, the matrix representation of the function $D^\alpha y(x)$ become

$$D^\alpha y(x) = D^\alpha X^\alpha SA$$

where, we compute the $D^\alpha X^\alpha$, then

$$D^\alpha X^\alpha = \begin{bmatrix} D^\alpha 1 & D^\alpha x^\alpha & D^\alpha x^{2\alpha} & \cdots & D^\alpha x^{N\alpha} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \Gamma(\alpha + 1) & \Gamma(2\alpha + 1) & \cdots & \Gamma(N\alpha + 1) \\ 0 & \Gamma(1) & \Gamma(2\alpha + 1) & \cdots & \Gamma((N-1)\alpha + 1) \end{bmatrix} x^{(N-1)\alpha}$$

$$= X^\alpha R_1$$

where

$$R_1 = \begin{bmatrix} 0 & \Gamma(\alpha + 1) & 0 & \cdots & 0 \\ 0 & \Gamma(1) & \Gamma(2\alpha + 1) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \Gamma(N\alpha + 1) \\ 0 & 0 & 0 & \cdots & \Gamma((N-1)\alpha + 1) \end{bmatrix}$$

then,

$$D^\alpha y(x) = X^\alpha R_1SA \ .$$

Available Online: http://saspjournals.com/sjpms

167
In a similar way for any i, it can be written by

$$B_i^\alpha y(x) = X^\alpha R_i SA$$

(10)

where

$$R_i = \begin{bmatrix}
0 & 0 & \ldots & \Gamma(k\alpha + 1) & 0 & \ldots & 0 \\
0 & 0 & \ldots & \Gamma((k+1)\alpha + 1) & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0
\end{bmatrix}$$

And then, we obtain the fundamental matrix form of Eq.(1)

$$\sum_{i=0}^{m} P_i X^\alpha R_i SA = F$$

(11)

Finally, we obtained the matrix representation of the condition in given Eq.(2) as

$$U_i = X^\alpha R_i S = [u_{a0} u_{a1} u_{a2} \ldots u_{ak}] = [\lambda_k]$$

(12)

Method of Solutions

We can write Eq. (11) in the form

$$WA = F$$

(13)

where

$$W = \begin{bmatrix}
w_0 & w_1 & \ldots & w_m \\
w_{10} & w_{11} & \ldots & w_{1m} \\
\vdots & \vdots & \ddots & \vdots \\
w_{m0} & w_{m1} & \ldots & w_{mm}
\end{bmatrix} = \sum_{k=0}^{m} P_i X^\alpha R_i S, \quad i,j = 0,1, \ldots, N$$

Consequently, to find the unknown Bernoulli coefficients a_k, $k = 0,1, \ldots, N$, related with the approximate solution of the problem consisting of Eq. (1) and conditions (2), by replacing the m row matrices (12) by the last m rows of the matrix (13), we have augmented matrix

$$\begin{bmatrix}
w_{a0} & w_{a1} & \ldots & w_{aN} & f(x_0) \\
w_{10} & w_{11} & \ldots & w_{1N} & f(x_1) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
w_{m0} & w_{m1} & \ldots & w_{mN} & f(x_m) \\
a_{00} & a_{01} & \ldots & a_{0N} & \lambda_0 \\
a_{10} & a_{11} & \ldots & a_{1N} & \lambda_1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m0} & a_{m1} & \ldots & a_{mN} & \lambda_m \\
\end{bmatrix}
$$

or the corresponding matrix equation

$$W^*A = F^*$$

(14)

Available Online: http://saspjournals.com/sjpms
If \(\det W \neq 0 \), we can write Eq.(14) as

\[
A = (W^*)^{-1} F^*.
\]

And the matrix \(A \) is uniquely determined. Therefore, the approximate solution is given by the truncated fractional Bernoulli series

\[
[y(x)] = X^a R_q SA.
\]

We can easily check the accuracy of the method. Since the truncated fractional Bernoulli series (3) is an approximate solution of Eq.(1), when the solution \(y(x) \) and its fractional derivatives are substituted in Eq.(1), the resulting equation must be satisfied approximately; that is, for \(x = x_q \in [a,b] \), \(q = 0,1,2,... \)

\[
E(x_q) = \left| D^a_{x} y(x) - f(x) - \sum_{r=0}^{m} p_r(x) y(q,x) \right| \leq 0
\]

Examples

In this section, we give a numerical example which is presented to demonstrate the effectiveness of the proposed method.

Example 1: Let us consider the fractional damped mechanical oscillator equation

\[
D^2_{x} y(x) + \lambda D^{1/2}_{x} y(x) + vy(x) = f(x)
\]

with the initial conditions. Here is

\[
y(0) = 1, y(1) = 2, f(x) = 2 \sqrt{x} + x + 1, v = 1, \lambda = \sqrt{\pi}.
\]

\[
y_4(x) = \sum_{N=0}^{4} a_N B^a_N(x)
\]

Fundamental matrix relation of this problem is

\[
\left[P_0 X^a R_0 + P_1 X^a R_1 + P_4 X^a R_4 \right] SA = F
\]

where

\[
P_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad P_1 = \begin{bmatrix} \sqrt{\pi} & 0 & 0 & 0 \\ 0 & \sqrt{\pi} & 0 & 0 \\ 0 & 0 & \sqrt{\pi} & 0 \\ 0 & 0 & 0 & \sqrt{\pi} \end{bmatrix}, \quad P_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
\]

\[
R_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad R_1 = \begin{bmatrix} \sqrt{\pi} & 0 & 0 & 0 \\ 0 & \sqrt{\pi} & 0 & 0 \\ 0 & 0 & \sqrt{\pi} & 0 \\ 0 & 0 & 0 & \sqrt{\pi} \end{bmatrix}, \quad R_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
\]

\[
F_0 = \begin{bmatrix} 1 \\ 2.25 \\ 2.91 \\ 3.48 \\ 4 \end{bmatrix}, \quad F_1 = \begin{bmatrix} 1 \\ 2.25 \\ 2.91 \\ 3.48 \\ 4 \end{bmatrix}, \quad F_4 = \begin{bmatrix} 1 \\ 2.25 \\ 2.91 \\ 3.48 \\ 4 \end{bmatrix}.
\]

Available Online: http://saspjournals.com/sjpms
\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & \sqrt[3]{2} & 1 & \sqrt[4]{3} \\
1 & \frac{1}{2} & \sqrt[4]{3} & \frac{1}{4} \\
1 & \frac{1}{4} & \frac{1}{4} & 16 & 16 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 \\
\frac{1}{2} \\
1 \\
1
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 6 & 0 & -\frac{1}{30}
\end{bmatrix}
\]

then, we obtained

\[
\begin{bmatrix}
\pi & 1 & \frac{1}{2} & \frac{1}{6} \\
\pi & 5 & \frac{1}{6} & \pi \\
\pi & 14 & \frac{1}{6} & \pi \\
\pi & 14 & \frac{1}{6} & \pi \\
\end{bmatrix}
\begin{bmatrix}
\pi \\
\frac{1}{2} \\
\frac{1}{6} \\
\pi \\
\end{bmatrix}
= \begin{bmatrix}
\frac{59}{30} \\
\frac{59}{30} \\
\frac{59}{30} \\
\frac{59}{30}
\end{bmatrix}
\]

Also, we have the matrix representation of conditions

\[
\begin{bmatrix}
U_0: \beta_0 \\
U_1: \beta_1
\end{bmatrix}
= \begin{bmatrix}
1 & -\frac{1}{2} & 1 & 0 \\
1 & 1 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
-\frac{1}{30} \\
-\frac{1}{30}
\end{bmatrix}
\]

Then, augmented matrix becomes

\[
\begin{bmatrix}
\pi & 1 & \frac{1}{2} & \frac{1}{6} \\
\pi & 5 & \frac{1}{6} & \pi \\
\pi & 14 & \frac{1}{6} & \pi \\
\pi & 14 & \frac{1}{6} & \pi \\
\end{bmatrix}
\begin{bmatrix}
\pi \\
\frac{1}{2} \\
\frac{1}{6} \\
\pi \\
\end{bmatrix}
= \begin{bmatrix}
\frac{59}{30} \\
\frac{59}{30} \\
\frac{59}{30} \\
\frac{59}{30}
\end{bmatrix}
\]

and so, solving this equation, we obtained the coefficients of the Bernoulli series

\[
A^T = \begin{bmatrix}
1.33 & 1 & 0.99 & 0 & 0
\end{bmatrix}
\]

Comparison of numerical results with the exact solution is plotted in Fig.1 for various N .
Fig-1: Comparison of approximate solutions and exact solution

CONCLUSION
In this study, we present a Bernoulli collocation method for the numerical solutions of the fractional damped mechanical oscillation equation. This method transforms the fractional damped mechanical oscillation equation into matrix equations. This paper presents a numerical solution to obtain the solution of fractional damped mechanical oscillation equation. Graphics show that this method is extremely effective and practical for this sort of approximate solutions of differential equations.

REFERENCES