Intramuscular Dioctophyme renale Surgically Removed from Dog – Rare Case Report

Pâmela Caye¹, Vanessa Milech², Charles Silva de Lima³, Fabrício de Vargas Arigony Braga⁴, Marlete Brum Cleft⁵, Josaine Cristina da Silva Rappeti⁶, Guilherme Albuquerque de Oliveira Cavalcanti⁷

¹Hospital of Veterinary Clinics at Federal University of Pelotas, Pelotas, RS, Brazil
²Federal University of Santa Maria, Santa Maria, RS, Brazil
³University of Franca, Franca, SP, Brazil
⁴Department of Veterinary Clinics at Federal University of Pelotas, Pelotas, RS, Brazil

Abstract: Dioctophyme renale is a nematode that affects mainly the right kidney of carnivores, but can also be found ectopically. A five-year-old dog was admitted at the Hospital of Veterinary Clinics at Federal University of Pelotas, presenting a swelling at the base of the penis and testicles. By ultrasonographic evaluation, the dog was diagnosed with dioctophymatosis at the lateral area of the penis in the abdominal cavity. This study was aimed to report a Dioctophyme renale case that was solved with a surgical procedure, which resulted in the removal of a 50-centimeter-long parasite from the rectus abdominis muscle of the patient. Even though no case of Dioctophyme renale on skeletal muscle of dogs has been reported before, it was concluded that the parasite can survive on muscular tissue of dogs.

Keywords: dog; kidney; muscle; dioctophymatosis; surgery; nematode.

INTRODUCTION

Dioctophymatosis is a disease caused by the parasite Dioctophyme renale, acknowledged like this since 1989 according to the International Commission on Zoological Nomenclature, according to Pedrassani and Nascimento in a literature review [1]. The helminth presents red-blood color, where the female may achieve 100 centimeters longs and the male 45 centimetres long, which is also identified through bell-shaped muscular bag at the posterior end [1, 2]. The parasite mainly affects the right kidney of carnivores, feeding on renal parenchyma and blood, destroying the renal parenchyma, transforming the organ into a fibrous capsule [1-5].

Lipolytic and proteolytic enzymes of parasite esophageal origin cause coagulation necrosis in the parasitized sites [1]. The disease is classified as a zoonosis, and the contamination of animals and man occurs through the ingestion of larvae present in the intermediate host, the aquatic oligochaete annelid Lumbriculus variegatus, or by ingestion of raw or underdone meat from paratennial hosts infected with larvae, such as fish and frog [1-3, 5].

In the definitive host, after ingestion of the larval form of Dioctophyme renale, there is a tendency of migration to the right kidney [1, 3, 6]. This migration has several theories, none of which is considered definitive, such as: migration by proximity of the duodenum to the right kidney [1, 2, 4, 6], the parasite’s own tropism by the organ and also, the displacement of the larvae to the liver, hepatic circulation, followed by the right kidney due to the proximity of the two organs [3, 7]. However, there are several reports of ectopic parasitism by Dioctophyme renale in dogs, which can be found in several organs [3, 7-9] and free in the abdominal cavity [2].

In the majority of time the disease is asymptomatic, since affecting one of the kidneys, the contralateral kidney undergoes compensatory hypertrophy and the animal shows no signs of renal insufficiency [6, 10, 11]. In the presence of clinical signs, weight loss, apathy, dorsal arching and gait are observed [1, 6]. The diagnosis for parasitism by Dioctophyme renale can be performed through examination of urinary sediment when there is renal involvement, and through the visualization of double, elliptical, brown and thick-bark eggs [6, 11, 12]. The identification of the parasite can also be performed by ultrasonography [1, 8], an efficient method that allows the visualization of tubular structures with hyperechogenic borders and a hypoechochogenic center [1, 5]; besides surgeries, necropsy [1] and computed tomography [13]. The increase of acute phase proteins

in the evaluation of patients' biochemical profile also serves as an indication of parasitosis [14].

No chemical therapy is effective for the treatment of infection by *Dioctophyme renale*, since the surgical removal of the parasite is the only way to resolve the disease [2, 6, 10]. The present study is aimed to describe a case of dioctophymatosis in a dog's rectus abdominis muscle, diagnosed and surgically treated at Hospital of Veterinary Clinics at Federal University of Pelotas.

CASE REPORT

A dog from a region of high social vulnerability in the city of Pelotas, Rio Grande do Sul, Brazil, was attended at the Veterinary Clinical Hospital of the Federal University of Pelotas (HCV–UFPe) showing increased volume in the testicles and at the base of the penis. It was found during anamnesis that the patient was a male, with no defined breed, with five years old and weighting 21 kilos, demonstrating palpation discomfort and local edema. The patient did not show any other clinically visible changes, having normal appetite and water intake, pink mucous membranes and lymph nodes with a physiological pattern.

Blood and urine collection were performed. The blood count showed a mild anemia (hematocrit 35.2%, hemoglobin 10.1g/dl), leukopenia (total leukocytes 4800/μl) and lymphopenia (lymphocytes 480/μl), and serum biochemistry (ALT, creatinine, urea and albumin) showed no changes. Urinalysis indicated moderate bacteriuria, with presence of various cells, without presence of *Dioctophyme renale* eggs. It was instituted antibiotic therapy based on 150mg of enrofloxacin every 24 hours and lavage of the urinary vesicle with warm sterile physiological solution until resolution of bacteriuria. To reduce discomfort, 500mg of dipyrone was prescribed every 8 hours. The patient was submitted to an ultrasound examination, where tubular structures with thin hyperechogenic walls compatible with the presence of *Dioctophyme renale*, located laterally to the penis, were found in the abdominal wall, close to the inguinal region. Surgical treatment was determined for parasite removal. The patient was hospitalized and monitored until they were sent to the operating room.

Fig-1: Transoperative of a dog presenting muscular dioctophymatosis. A) Gallery formed by migration of *Dioctophyme renale* in the rectus abdominis muscle of a dog. B) Removal of *Dioctophyme renale* from the rectus abdominis muscle.

Six days after the first hematological examination, the evaluation was repeated. The second analysis revealed a fall in hematocrit to 33.1% and hemoglobin remained stable. Leukopenia was reversed (total leukocytes 10.100/μl) and lymphocytes represented 1.313/μl. After preoperative preparation and routine anesthetic procedures, the surgical procedure was started in search of the parasite, which was not located in the region indicated by the ultrasound examination. With the perception of an increase in the volume of the rectus abdominis muscle, the site was researched, since nothing was found, also, in the exploratory laparotomy. Muscle dissection was performed, and galleries were visualized, which allowed the localization and subsequent removal of the parasite (Figure-1).

The procedure resulted in the removal of one specimen of *Dioctophyme renale* measuring 50 centimetres. After exploring all the organs and confirming that there were no more copies of the parasite, the muscle was debrided and the abdominal wall sutured as usual. Immediately after the surgical procedure, the patient received 4mg/kg of tramadol hydrochloride and 0.2mg/kg of meloxicam, both for pain and inflammation management, as well as...
30mg/kg of cefalotin as antibiotic therapy. On the seventh day after the surgical procedure, the stiches were removed, and the patient was fine.

DISCUSSION AND CONCLUSION

The patient was taken to a veterinarian’s appointment because of an increase in volume in the penile region and palpation discomfort, causing a suspicion of local tumor mass. Ultrasonographic, hematological, and urinary exams were performed to determine the diagnosis. Ultrasonography showed compatible structures as reported by the literature for the diagnosis of dioctophymatosis [1, 5, 8]. Although computed tomography is as effective as ultrasonography in the diagnosis of dioctophymatosis [13], it is a hardly accessible and onerous examination, therefore, it was not performed.

Anemia is a frequent finding in these patients, since a single parasite is capable of causing complete Destruction of the kidney, leading to blood loss and decreased production of erythropoietin [1]. The reported dog did not receive a balanced diet, which, in association with the blood spoliation performed by the parasite, possibly led to the development of anemia. Since there are no reported cases of muscular dioctophymatosis, it is not possible to determine the main cause of anemia in the present patient. There is no evidence that dioctophymatosis is related to the development of leukopenia and lymphopenia, which may have secondary causes in the patient, as a response to glucocorticoids, acute systemic infection and the occurrence of lymphomas [15]. Investigation of acute phase proteins was not performed, which is indicative of parasitosis [14].

Bacteriuria diagnosed by urinalysis is also not related to the case of muscular dioctophymatosis, since the parasite did not affect the kidneys nor the urinary vesicle. Examination of urinary sediment of affected patients usually counts on the presence of parasite’s eggs, however, this fact only occurs when there are females parasitizing one kidney, or both [1, 12]. In the case of urinalysis of the treated patient, there were no eggs of *Dioctophyme renale*, since the parasitosis was caused by a specimen that was not located in the kidneys, nor in the urinary tract.

The increase in volume in the inguinal region lateral to the penis was perceptible and palpable hours before the patient entered the surgical block, but during the surgery the volume increase was not observed. The parasite was not located in the subcutaneous tissue nor in the scrotum, since the patient also underwent an orchectomy, at the tutor's request. Thus, it was verified that *Dioctophyme renale* was not parasitizing the subcutaneous tissue nor had it migrated to the scrotum, justifying an exploratory laparotomy. This technique allowed the removal of a nematode of the genus *Dioctophyme renale* found inside galleries, formed by its migration through the musculature. The penetration power in the tissues is due to the capacity of the esophageal glands of the nematode to produce proteolytic and lipolytic enzymes that, in contact with tissues, cause coagulation necrosis [1, 16]. It is the migration capacity that justifies the finding of the nematode in a different location than indicated during the ultrasound and explains the need to change the surgical approach.

Although dioctophymatosis is frequently associated with the right kidney, there are several reports of ectopic locations of *Dioctophyme renale*, such as in a gestational sac in the right uterine horn [3], in the inguinal region, in a breast tumor [7], in the mesenteric lymph node, lobes of the liver, in the left kidney [8], between the intestinal [9] and free loops in the abdominal cavity [2]. However, to date, no reports of *Dioctophyme renale* in the muscle tissue of dogs have been found in the literature.

The prognosis becomes relative to the affected site, the parasite load and the time of infection. Considering that there are no other reports of dioctophymatosis in dog muscle, it is not possible to draw a comparative profile of the evolution of the disease. Thus, it is only possible to analyze this isolated case, with rapid resolution, where *Dioctophyme renale* migrated from the lateral tissue to the penis to the rectus abdominal muscle. Hence, it can be concluded that *Dioctophyme renale* has the capacity to parasite the skeletal muscle of dogs, and this may be the first report of dioctophymatosis in registered muscle tissue.

REFERENCES