Arens Regularity of Bilinear Mapping and Reflexivity

Abotaleb Sheikhali, Nader Kanzi

E-mail address: Abotaleb.sheikhali.20@gmail.com, Nad.kanzi@gmail.com

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran

Article History
Received: 20.12.2017
Accepted: 20.01.2018
Published: 30.01.2018

DOI: 10.21276/sjpms.2018.5.1.3

Abstract: Let X, Y and Z be normed spaces. In this article we give a tool to investigate Arens regularity of a bounded bilinear map $f : X \times Y \to Z$. Also, under some assumptions on f^{***} and f^{****}, we give some new results to determine reflexivity of the spaces.

Keywords: Arens regular, bilinear map, topological center, factor, second dual.

2010 Mathematics Subject Classification. 46H20, 46H25

INTRODUCTION AND PRELIMINARIES

Arens showed in [1] that a bounded bilinear map $f : X \times Y \to Z$ on normed spaces, has two natural different extensions f^{***}, f^{****} from $X^{**} \times Y^{**}$ into Z^{**}. When these extensions are equal, f is said to be Arens regular. Throughout the article, we identify a normed space with its canonical image in the second dual.

We denote by X^{*} the topological dual of a normed space X. We write X^{**} and so on. Let X, Y and Z be normed spaces and $f : X \times Y \to Z$ be a bounded bilinear mapping. The natural extensions of f are as following:

(i) $f^{*} : X^{*} \times Y \to Y^{*}$, give by $<f^{*}(x^{*}), y> = f(x, y)$ where $x \in X$, $y \in Y$, $x^{*} \in X^{*}$ (f^{*} is said the adjoint of f).

(ii) $f^{**} = (f^{*})^{*} : Y^{**} \times Z \to X^{*}$, give by $<f^{**}(y^{**}, z^{*}), x^{*}> = <y^{**}, f^{*}(z^{*}, x^{*})>$.

(iii) $f^{***} = (f^{**})^{*} : X^{**} \times Y^{**} \to Z^{*}$, give by $<f^{***}(x^{**}, y^{**}), z^{*}> = <x^{**}, f^{**}(y^{**}, z^{*})>$.

Let now $f^{+} : Y \times X \to Z$ be the flip of f defined by $f^{+}(y, x) = f(x, y)$, for every $x \in X$ and $y \in Y$. Then f^{+} is a bounded bilinear map and it may extends as above to $f^{++} : Y^{**} \times X^{**} \to Z^{**}$. In general, the mapping $f^{+++} : X^{**} \times Y^{**} \to Z^{**}$ is not equal to f^{***}. When these extensions are equal, then f is Arens regular.

One may define similarly the mappings $f^{****} : Z^{**} \times X^{**} \to Y^{***}$ and $f^{*****} : Y^{***} \times Z^{**} \to X^{***}$ and the higher rank adjoints. Consider the nets $(x_{a}) \subseteq X$ and $(y_{\beta}) \subseteq Y$ converge to $x^{**} \in X^{**}$ and $y^{**} \in Y^{**}$ in the weak* –topologies, respectively, then

$f^{***}(x^{**}, y^{**}) = w^{*} - \lim_{a} w^{*} - \lim_{\beta} f(x_{a}, y_{\beta})$
and
$f^{****}(x^{**}, y^{**}) = w^{*} - \lim_{\beta} w^{*} - \lim_{a} f(x_{a}, y_{\beta})$

So Arens regularity of f is equivalent to the following

$\lim_{a} \lim_{\beta} <z^{*}, f(x_{a}, y_{\beta})> = \lim_{\beta} \lim_{a} <z^{*}, f(x_{a}, y_{\beta})>$

If the limits exit for each $z^{*} \in Z^{*}$. The map f^{***} is the unique extension of f such that $x^{**} \to f^{***}(x^{**}, y^{**}) : X^{**} \to Z^{**}$ is weak* – weak* continuous for each $y^{**} \in Y^{**}$ and $y^{**} \to f^{***}(x^{**}, y^{**}) : Y^{**} \to Z^{**}$ is weak* – weak* continuous for each $x^{**} \in X^{**}$. The left topological center of f is defined by

$Z_{L}(f) = \{x^{**} \in X^{**} : y^{**} \to f^{***}(x^{**}, y^{**}) : Y^{**} \to Z^{**} \text{ is weak* – weak* continuous}\}.$

Since $f^{++} : X^{**} \times Y^{**} \to Z^{**}$ is the unique extension of f such that the map $y^{**} \to f^{++}(x^{**}, y^{**}) : Y^{**} \to Z^{**}$ is weak* – weak* continuous for each $x^{**} \in X^{**}$, we can set

$Z_{r}(f) = \{y^{**} \in Y^{**} : x^{**} \to f^{+++}(x^{**}, y^{**}) : X^{**} \to Z^{**} \text{ is weak* – weak* continuous}\}.$

Again since the map $x^{**} \to f^{+++}(x^{**}, y^{**}) : X^{**} \to Z^{**}$ is weak* – weak* continuous for each $y^{**} \in Y^{**}$, we have

$Z_{r}(f) = \{y^{**} \in Y^{**} : x^{**} \to f^{+++}(x^{**}, y^{**}) : (x^{**} \in X^{**})\}.$
A bounded bilinear mapping f is Arens regular if and only if $Z(f) = X^\ast\ast$ or equivalently $Z_r(f) = Y^\ast$. It is clear that $X \subseteq Z(f)$. If $X = Z(f)$ then the map f is said to be left strongly irregular. Also $Y \subseteq Z_r(f)$ and if $Y = Z_r(f)$ then the map f is said to be right strongly irregular. A bounded bilinear mapping $f: X \times Y \to Z$ is said to factor if it is onto.

Investigate Arens regularity of bounded bilinear maps

S. Mohammadzadeh and Vishki H.R proved in [6] acriterion concerning to the regularity of a bounded bilinear map. They showed that f is Arens regular if and only if $f^{++++}(Z^\ast, X^\ast) \subseteq Y^\ast$. In the section we provide the same conditions of Arens regularity. First, we give a similar lemma to the [6, Theorem 2.1].

Lemma 2.1. For a bounded bilinear map f from $X \times Y$ into Z the following statements are equivalent:

(i) f is Arens regular;
(ii) $f^{++++} = f^{++++}$;
(iii) $f^{++++} = f^{++++}$.

Proof. If (i) hold then f^T is Arens regular. Therefor $f^{++++} = f^{++++}$. For every $x^\ast \in X^\ast$, $y^\ast \in Y^\ast$ and $z^\ast \in Z^\ast$ we have

$$\langle f^{++++}(y^\ast, z^\ast), x^\ast \rangle = \langle z^\ast, f^{++++}(y^\ast, x^\ast) \rangle = \langle f^{++++}(z^\ast, x^\ast), y^\ast \rangle = \langle f^{++++}(z^\ast, y^\ast), x^\ast \rangle.$$

Therefore $f^{++++} = f^{++++}$.

(ii) \Rightarrow (iii) Let $x^\ast \in X^\ast$, $y^\ast \in Y^\ast$ and $z^\ast \in Z^\ast$ we have

$$\langle f^{++++}(z^\ast, x^\ast), y^\ast \rangle = \langle z^\ast, f^{++++}(x^\ast, y^\ast) \rangle = \langle x^\ast, f^{++++}(z^\ast, y^\ast) \rangle = \langle x^\ast, f^{++++}(z^\ast, x^\ast) \rangle.$$

(iii) \Rightarrow (i) Let $x^\ast \in X^\ast$, $y^\ast \in Y^\ast$ and $z^\ast \in Z^\ast$ we have

$$\langle f^{++++}(x^\ast, y^\ast), z^\ast \rangle = \langle f^{++++}(y^\ast, x^\ast), z^\ast \rangle = \langle f^{++++}(z^\ast, x^\ast), y^\ast \rangle = \langle f^{++++}(z^\ast, y^\ast), x^\ast \rangle = \langle f^{++++}(x^\ast, y^\ast), z^\ast \rangle = \langle f^{++++}(x^\ast, y^\ast), z^\ast \rangle.$$

It follows that f is Arens regular and this completes the proof.

Theorem 2.2. Bounded bilinear map f from $X \times Y$ into Z is Arens regular if and only if $f^{++++}(Y^\ast, Z^\ast) \subseteq X^\ast$.

Proof. Let $y^\ast \in Y^\ast$ and $z^\ast \in Z^\ast$ be arbitrary. If f is Arens regular Then $f^{++++} = f^{++++}$. Therefore

$$f^{++++}(y^\ast, z^\ast) = f^{++++}(y^\ast, z^\ast) = f^{++++}(y^\ast, z^\ast) = f^{++++}(y^\ast, z^\ast) \subseteq X^\ast.$$

Conversely, suppose $f^{++++}(Y^\ast, Z^\ast) \subseteq X^\ast$. Let $(x_\alpha, y_\beta) \subseteq X$ and $(y_\beta, x_\alpha) \subseteq Y$ be two nets that are converge to x^\ast and y^\ast in the weak-topologies, respectivety. Then

$$\langle f^{++++}(x_\alpha, y_\beta), z^\ast \rangle = \lim_{\alpha, \beta} \langle f^{++++}(x_\alpha, y_\beta), z^\ast \rangle = \lim_{\alpha, \beta} \langle f^{++++}(x_\alpha, y_\beta), z^\ast \rangle = \lim_{\alpha, \beta} \langle f^{++++}(x_\alpha, z^\ast), y_\beta \rangle = \lim_{\alpha, \beta} \langle x_\alpha, f^{+++}(z^\ast, y_\beta) \rangle = \lim_{\alpha, \beta} \langle x_\alpha, f^{+++}(z^\ast, y_\beta) \rangle = \lim_{\alpha, \beta} \langle f^{+++}(x_\alpha, y_\beta), z^\ast \rangle.$$

Therefore f is Arens regular and this completes the proof.

Corollary 2.3. For a bounded bilinear map $f: X \times Y \to Z$, the following statements are equivalent:

(i) $f^{++++}(Y^\ast, Z^\ast) \subseteq X^\ast$;
(ii) f and f^* are Arens regular;
(iii) $f^{++++} = f^{++++}$.

Proof. The implication (i) \Rightarrow (ii) follows from the fact that $f^{++++}(Y^\ast, Z^\ast) \subseteq f^{++++}(Y^\ast, Z^\ast) \subseteq X^\ast$. Now Theorem 2.2 implies the Arens regularity of f, or equivalently $f^{++++} = f^{++++}$. From which $f^{++++}(Z^\ast, Y^\ast) = f^{++++}(Z^\ast, Y^\ast) = f^{++++}(Z^\ast, Y^\ast) = f^{++++}(Y^\ast, Z^\ast) \subseteq X^\ast$.

Available Online: http://saspjournals.com/sjpms
Therefore the Arens regularity of f^{**} follows again by Theorem 2.2. Thus f^{**} is Arens regular.

(ii) \Rightarrow (iii) If f is Arens regular. Then

$$f^{****} = f^{*****} \Rightarrow f^{****} = f^{*******}$$

(2-1)

Now if f is Arens regular. Then we have

$$f^{****} = f^{*******}$$

(2-2)

The equalities (2-1) and (2-2) together establish the assertion.

(iii) \Rightarrow (i) First we show that $f^{*******} = f^{*****}$. For every $x^{**} \in X^{**}, y^{**} \in Y^{**}$ and $z^{***} \in Z^{***}$

$$< f^{*****}(y^{**}, z^{***}), x^{**} >= < f^{******}(z^{***}, y^{**}), x^{**} >= < f^{******}(y^{**}, x^{**}) >$$

$$= < z^{***}, f^{*****}(x^{**}, y^{**}) >= < f^{******}(z^{***}, x^{**}), y^{**} >=$$

$$= < f^{******}(z^{***}, x^{**}), y^{**} >= < f^{******}(y^{**}, z^{***}), y^{**} >=$$

$$= < x^{**}, f^{*****}(z^{***}, y^{**}) >= < f^{******}(y^{**}, z^{***}), x^{**} >$$

As $f^{******}(Y^{**}, Z^{***})$ lies in X^{*} thus $f^{*******}(Y^{**}, Z^{***}) \subseteq X^{*}$ and the proof.

Theorem 2.4. Let X and A be normed spaces and $g : X \times A \rightarrow X$ is a bounded bilinear map. If $g^{***} : X^{**} \times A^{**} \rightarrow X^{*}$ factor and g is Arens regular. Then g is Arens regular.

Proof. Let g^{***} factor. Thus for every $x^{**} \in X^{**}$ there exists $y^{**} \in X^{**}$ and $b^{**} \in A^{**}$ such that $x^{**} = g^{***}(y^{**}, b^{**})$. Suppose that $a^{**} \in A^{**}$ and $(a_{\beta}, y_{\beta}) \subseteq A^{**} \subseteq Y^{**}$ be bounded nets weak*–converging to a^{**}, b^{**} and y^{**} respectively. For every $x^{*} \in X^{*}$ we have

$$< g^{********}(x^{*}, a^{**}), x^{*} >= < g^{********}(x^{*}, a^{**}), x^{*} >$$

$$= < g^{********}(x^{*}, a^{**}), g^{**}(y^{**}, b^{**}) >= < g^{**}(g^{********}(x^{*}, a^{**}), y^{**}), b^{**} >$$

$$= < g^{********}(x^{*}, a^{**}), y^{**} > = \lim_{\beta} < g^{********}(x^{*}, a^{**}), y^{**} >$$

$$= \lim_{\beta} < g^{***}(x^{*}, a^{**}), y_{\beta} > = \lim_{\beta} < g^{**}(a_{\beta}, y_{\beta}), x^{*} >$$

$$= \lim_{\beta} < g^{***}(a_{\beta}, y_{\beta}), x^{*} > = \lim_{\beta} < a^{***}, g^{********}(b_{\beta}, y_{\beta}), x^{*} >$$

$$= \lim_{\beta} \lim_{\gamma} < g^{********}(b_{\beta}, y_{\beta}), x^{*}, a_{\alpha} > = \lim_{\beta} \lim_{\gamma} < g^{********}(b_{\beta}, y_{\beta}), g^{********}(x^{*}, a_{\alpha}) >$$

$$= \lim_{\beta} \lim_{\gamma} < g^{********}(b_{\beta}, y_{\beta}), g^{********}(x^{*}, a_{\alpha}) > = \lim_{\beta} \lim_{\gamma} < g^{********}(b_{\beta}, y_{\beta}), g^{********}(x^{*}, a_{\alpha}) >$$

$$= \lim_{\beta} \lim_{\gamma} < g^{********}(b_{\beta}, y_{\beta}), g^{********}(x^{*}, a_{\alpha}) > = \lim_{\beta} \lim_{\gamma} < g^{********}(b_{\beta}, y_{\beta}), g^{********}(x^{*}, a_{\alpha}) >$$

As $g^{********}(Y^{**}, Z^{***})$, lies in X^{*} thus $g^{***********}(Y^{**}, Z^{***}) \subseteq X^{*}$ and the proof.

Theorem 3.1. For a bounded bilinear map $f : X \times Y \rightarrow Z$.
(i) If \(f^{****} \) factor then both \(f \) and \(f^* \) are Arens regular if and only if \(Y \) is reflexive.
(ii) If \(f^{******} \) factor then both \(f \) and \(f^* \) are Arens regular if and only if \(X \) is reflexive.

Proof. We only give a proof for (ii). A similar proof applies for (i). Let \(f \) and \(f^* \) are Arens regular by Corollary 2.3 \(f^{******}(Y^{***}, Z^{****}) \subseteq X^* \). On the other hand \(f^{******} \) factors, So \(f^{******}(Y^{**} \times Z^{***}) = X^{***} \). Therefore \(X^{***} \subseteq X^* \). Conversely, using [8,2,3] is obvious.

As an immediate consequence of Theorem 3.1 and [8,2,4], we have the next Corollary.

Corollary 3.2. If one of the two following statement is assumed:

(i) \(f \) and \(f^* \) are Arens regular and \(f^{******} \) factor;
(ii) \(f \) and \(f^{**} \) are Arens regular and \(f^{****} \) factor;
Then every adjoint map and every flip map of \(f \) is Arens regular.

Corollary 3.3. Let \(f \) and \(f^* \) are Arens regular and \(f^{******} \) factor. Then \(f \) is left strongly irregular if and only it is right strongly irregular.

Proof. The follows by applying Theorem 3.1 and [8,Theorem 2.5].

If \(X \) is reflexive. Then obviously bounded bilinear map \(f \) from \(X \times Y \) into \(Z \) is Arens regular. But from Arens regularity \(f \) does not imply the reflexivity of \(X \). The next Theorem, we use the Theorem 2.2 and show that if \(f^{**}(z^*Y) = X^* \). Then \(X \) is reflexive.

Theorem 3.4. Let bounded bilinear map \(f \) from \(X \times Y \) into \(Z \) is Arens regular and let \(Y \) is a Banach space. If \(f^{**}(z^*Y) = X^* \) for some \(z^* \in Z^* \); Then \(X \) is reflexive.

Proof. Let \(h : Y \rightarrow X^* \) define by \(h(y) = f^{**}(z^*, y) \) for every \(y \in Y \). Obviously \(h^*(x^*) = f^{**}(x^*, z^*) \) for every \(x^* \in X^{**} \). We have

\[
< h^*(y^*), x^* > = < y^*, h^*(x^*) > = < y^*, f^{**}(x^*, z^*) > =\]

\[
= < f^{******}(y^*, x^*), z^* > = < f^{******}(z^*, y^*), x^* > = < f^{******}(y^*, z^*), x^* >.
\]

Therefore \(h^*(y^*) = f^{******}(y^*, z^*) \) for every \(y^* \in Y^{**} \). Now Theorem 2.2 implies that \(f^{******}(Y^{**}, Z^*) \subseteq X^* \). Since \(f^{**}(z^*, Y) = X^* \) thus \(h \) is onto. Therefore \(h^* \) from \(Y^{**} \) into \(X^{***} \) is onto. Let \(x^{***} \in X^{***} \) so there exists \(y^{**} \in Y^{**} \) such that \(x^{***} = h^*(y^{**}) = f^{******}(y^*, z^*) \in X^* \). Thus \(X \) is reflexive.

REFERENCES